Meridian 1

Intelligent peripheral equipment circuit cards for Germany

Option 11 - Description and Installation

Document Number: Supplement to 553-3011-210

Document Release: Provisional 2.0

Date: May 1994

© 1993, 1994 All rights reserved

Printed in Canada

Information is subject to change without notice. Northern Telecom reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules.

SL-1 and Meridian 1 are trademarks of Northern Telecom.

Revision history

May 1994

Provisional, release 2.0, to add NT5K36BA content

June 1993

Provisional, release 1.2.

Includes hardware vintage changes and one new feature.

April 1993

Provisional, release 1.1.

November 1992

Provisional, release 1.0.

Contents

About this document	vi
NT5K93 Central office trunk circuit cards	1
Functional description	1
Physical description	2
Technical description	5
Trunk types description	7
Features description	8
E&M tie trunk circuit card	ç
Functional description	ç
Physical description	10
Technical description	16
Trunk types description	18
Direct Inward Dial/Direct Outward Dial Trunk Card	25
Functional description	25
Physical description	26
Technical description	30
Direct Inward Dial/Direct Outward Dial description	32
Direct Inward Dial Auto Answer Circuit (DID Tester) 53
Functional description	53
Physical description	54

vi Contents

Technical description	58
German operational requirements	59

About this document

This document is a Supplement to the Option 11 *Installation guide* 553-3011-210. It describes the functions and applications of the following circuit cards that are available for use in Germany:

- NT5K70AB Central Office Trunk card (8-unit)
- NT5K71AB Central Office Trunk card (4-unit)
- NT5K72AA E&M Tie Trunk card
- NT5K36AB Direct Inward Dial/Direct Outward Dial Trunk card.
- NT5K92AA Direct Inward Dial Auto Answer Circuit.

NT5K93 Central office trunk circuit cards

Functional description

The NT5K70AB Central Office trunk card for Germany provides the interface between the Option 11 system and up to eight analog Central Office (CO) trunks. The NT5K71AB Central Office trunk card is the same as the NT5K70AB trunk card, but connects up to four analog trunks instead of eight.

The NT5K70AB and NT5K71AB trunk cards can be installed in slots 1 to 10 in the main cabinet and in any slot in the expansion cabinet.

Common features

The NT5K70AB and NT5K71AB Central Office trunk cards:

- support internal 16 kHz periodic pulse metering (PPM)
- allow individual units or the entire board to be disabled by software
- provide software selectable A-law companding
- indicate self-test status during an automatic or manual self-test
- convert transmission signals from analog-to-digital and from digital-to-analog
- provide 2 dB transmission pads for long/short line operation
- provide termination and transhybrid balance impedance to match the German complex impedance network
- provides busy tone detection on a per unit basis, when configured to do so in software

- provides 100 ms Flashhook for feature access
- provide direct reporting of Periodic Pulse Metering (PPM) pulses to software in either buffered or unbuffered format

Physical description

Switch settings

There are no option switches on either the NT5K70AB or the NT5K71AB Central office trunk card. All settings are configured in software.

Connections

Each unit on the NT5K70AB/NT5K71AB card connects to the shelf backplane through an 80-pin connector. The backplane is cabled to the input/output (I/O) panel which is then cabled to the cross-connect terminal.

At the cross-connect terminal, each unit connects to external apparatus by Tip and Ring leads.

Installation

Tables 1 and 2 provide cross connect information for the NT5K70 and NT5K71 Central Office trunk cards.

Table 1
NT5K70 Central Office Trunk connections

Lead	Pins	Pair color	Unit number
T0 R0	26 1	W-BL BL-W	Unit
	27 2	W-O O-W	0
T1 R1	28 3	W-G G-W	Unit
	29 4	W-BR BR-W	1
T2 R2	30 5	W-S S-W	Unit
	31 6	R-BL BL-R	2
T3 R3	32 7	R-O O-R	Unit
	33 8	R-G G-R	3
T4 R4	34 9	R-BR BR-R	Unit
	35 10	R-S S-R	4
T5 R5	36 11	BK-BL BL-BK	Unit
	37 12	BK-O O-BK	5
T6 R6	38 13	BK-G G-BK	Unit
	39 14	BK-BR BR-BK	6
T7 R7	40 15	BK-S S-BK	Unit
	41 16	Y-BL BL-Y	7

Table 2
NT5K71 Central Office Trunk connections

Lead	Pins	Pair color	Unit number
T0 R0	26 1	W-BL BL-W	
	27 2	W-O O-W	Unit
	28 3	W-G G-W	0
	29 4	W-BR BR-W	
T1 R1	30 5	W-S S-W	
	31 6	R-BL BL-R	Unit
	32 7	R-O O-R	1
	33 8	R-G G-R	
T2 R2	34 9	R-BR BR-R	
	35 10	R-S S-R	Unit
	36 11	BK-BL BL-BK	2
	37 12	BK-O O-BK	
T3 R3	38 13	BK-G G-BK	
	39 14	BK-BR BR-BK	Unit
	40 15	BK-S S-BK	3
	41 16	Y-BL BL-Y	

Self-test

When the NT5K70AB/NT5K71AB trunk card is installed and power is applied to it, a self-test is performed on the card. The red LED on the faceplate flashes three times, then remains continuously lit until the card is enabled in software. If the self-test fails, the LED will remain lit.

Technical description

The technical details of the NT5K93 Central office trunk card are outlined below

Power requirements

Table 3 lists the power requirements for the NT5K70AB trunk card, Table 4 lists the power requirements for the NT5K71AB trunk card.

Table 3
Power requirements for the NT5K70AB card

Voltage	Idle current	Active current
+15.0 V dc (see note 1)	160 ma	250 ma
+ 8.5 V dc (see note 2)	120 ma	120 ma
+ 5.0 V dc	220 ma	350 ma

Table 4
Power requirements for the NT5K71AB trunk card

Voltage	Idle current	Active current
<u>+</u> 15.0 V dc (see note 1)	100 ma	150 ma
+ 8.5 V dc (see note 2)	100 ma	100 ma
+ 5.0 V dc	150 ma	220 ma

Note 1: Analog circuitry is powered with +/- 12V generated from +/- 15V. The maximum current imbalance between the +/- 15V rails is 100 ma per circuit pack.

Note 2: 8.5V is regulated to give 5V.

Environmental specifications

Table 5 lists the environmental specifications for the NT5K70AB and NT5K71AB trunk cards

Table 5
Environmental specifications for NT5K70AB and NT5K71AB

Parameter	Specifications
Operating temperature	0 to 40 degrees C, ambient
Operating humidity	10 to 95 % Relative Humidity
Storage temperature	- 45 to + 70 degrees C
Storage humidity	0 to 95% Relative Humidity

Transmission parameters

Loss values for the NT5K70AB and NT5K71AB trunk cards are given in Table 6. Pads are switched by software, with the default being the Pad OUT condition.

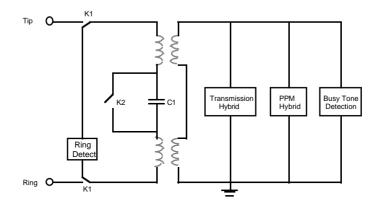
Table 6 NT5K70AB/NT5K71AB Pad switching

	Pad IN (Short Line)	Pad OUT (Long Line)
Analog-to-Digital loss	-5.0 dB	-7.0 dB
Digital-to-Analog loss	+2.0 dB	0 dB

Note: The tolerance for the above nominal values is +/- .55 dB.

Trunk types description

Each NT5K70AB/NT5K71AB Central office trunk card supports:


- Loop start operation
- 16 kHz Periodic Pulse Metering (PPM), also referred to as Subscriber Pulse Metering (SPM)
- Busy tone detection and supervision (call disconnect).

For information on features and signaling arrangements, see *Generic X11 including supplementary features* (PO730484 or NTCK09 in the UK).

Loop start operation

Loop start operation is configured in software and is implemented in the card through software download messages. Loop start operation for the NT5K70AB and NT5K71AB trunk cards is shown in Figure 1.

Figure 1
NT5K70AB/NT5K71AB loop start operation

Idle state

In the idle state, the central office trunk card provides a high impedance loop toward the central office. The ringing detector is connected across the tip and ring leads.

Call placed by central office

The Central Office initiates a call by applying ringing voltage between the tip and ring leads. If the call is answered, relay K1 changes over, thus switching out the ringing detector and placing a low resistance loop between the tip and ring leads.

Call placed by Option 11

To initiate a call, the Option 11 activates relay K1, which switches out the ringing detector and places a low resistance loop across the tip and ring leads. The Option 11 sends digits in the form of Dual Tone Multifrequency (DTMF) tones or pulse digits. Pulse digits are generated by opening and closing Relay K2.

Call disconnect

If Busy Tone detection is configured in LD 14, the central office can disconnect a call by sending the Busy Tone signal. When the central office trunk card receives this signal, a disconnect message is sent to software.

The Option 11 disconnects the call by opening Relay K2 and removing the dc loop. The low impedance ac path remains for 2 seconds to present metering pulses. After 2 seconds, Relay K1 times out, breaking the ac path and re-connecting the ringing detector across the tip and ring leads.

Features description

Periodic Pulse Metering (PPM)

All trunk units on the NT5K70AB/NT5K71AB card support the Periodic Pulse Metering (PPM) feature, or Subscriber Pulse Metering (SPM), as it is sometimes called.

Periodic Pulse Metering allows the user of a telephone on an Option 11 to keep an accurate record of central office calls for billing or administration purposes.:

Note: PPM is configured on a per unit basis.

For more information on PPM, refer to *Generic X11 Including Supplementary Features appendix 2 to 553-2311-105*.

E&M tie trunk circuit card

Functional description

The NT5K72AA E&M Tie trunk card for Germany provides the interface between the Option 11 system and up to four analog trunks. It can be installed in slots 1 to 10 in the main cabinet and in any slot in the expansion cabinet.

The NT5K72AA E&M Tie trunk card supports four analog trunks. Each trunk circuit can be individually configured as:

- 4-wire E&M Type 1 and 2
- Recorded Announcement trunk (RAN)
- Music trunk (MUS)
- Paging trunk (PAG)

Common features

The NT5K72AA E&M Tie trunk card:

- converts transmission signals from analog-to-digital and from digital-to-analog
- provides software selectable A-law or μ -law operation
- enables and disables individual units or the entire card under software control
- provides outpulsing on the card. Make break ratios are defined in software and downloaded during power up and by software commands.

- provides indication of card status from self-test diagnostics on the LED
- allows trunk type to be configured through service change or on a per unit basis
- provides termination against 600 ohms for 4-wire E&M trunk circuits
- provides paging (PAG), recorded announcement (RAN), and Music (MUS) interfaces.

Physical description

Measurements

Each NT5K83CA E&M Tie trunk card measures 12.5 in. (320 mm) in height by 10 in. (255 mm) in depth.

Switch settings

There are no option switches on the NT5K72AA E&M Tie trunk card. All settings are configured in software.

Connections

The NT5K72AA E&M Tie trunk card has four units. Each unit connects to the shelf backplane through an 80-pin connector. The backplane is cabled to the input/output (I/O) panel which is then cabled to the cross-connect terminal.

At the cross-connect terminal, each unit connects to external apparatus by tip and ring leads. For detailed termination and cross-connect information, see *System installation procedures* (553-3001-210).

Installation

Tables 1 to 4 provide cross connect information for the NT5K72 E&M Tie trunk card.

Table 7 NT5K72 E&M 4-Wire Type 1 connections

Lead designations	Pins	Pair color	Unit number
RA	26	W-BL	
RB	1	BL-W	
TA	27	W-O	Unit
TB	2	O-W	0
E	28	W-G	
M	3	G-W	
RA	30	W-S	
RB	5	S-W	
TA	31	R-BL	Unit
TB	6	BL-R	1
E	32	R-O	
M	7	O-R	
RA	34	R-BR	
RB	9	BR-R	
TA	35	R-S	Unit
TB	10	S-R	2
E	36	BK-BL	
M	11	BL-BK	
RA	38	BK-G	
RB	13	G-BK	
TA	39	BK-BR	Unit
TB	14	BR-BK	3
E	40	BK-S	
M	15	S-BK	

Note: Note: The cable pair designated TA, TB is the transmit pair. The pair designated RA, RB is the receive pair.

Table 8 NT5K72 E&M 4-Wire Type 2 connections

Lead designations	Pins	Pair color	Unit number
RA	26	W-BL	
RB	1	BL-W	
TA	27	W-O	Unit
TB	2	O-W	
EA	28	W-G	0
EB	3	G-W	
MA	29	W-BR	
MB	4	BR-W	
RA	30	W-S	
RB	5	S-W	
TA	31	R-BL	Unit
TB	6	BL-R	
EA	32	R-O	1
EB	7	O-R	
MA	33	R-G	
MB	8	G-R	
RA	34	R-BR	
RB	9	BR-R	
TA	35	R-S	Unit
TB	10	S-R	
EA	36	BK-BL	2
EB	11	BL-BK	
MA	37	BK-O	
MB	12	O-BK	
RA	38	BK-G	
RB	13	G-BK	
TA	39	BK-BR	Unit
TB	14	BR-BK	
EA	40	BK-S	3
EB	15	S-BK	
MA	41	Y-BL	
MB	16	BL-Y	

Note: The cable pair designated TA, TB is the transmit pair. The pair designated RA, RB is the receive pair.

Table 9 NT5K72 E&M Voice Paging connections

Lead designations	Pins	Pair color	Unit number
T0	27	W-O	Unit
R0	2	O-W	
A	29	W-BR	0
PG	4	BR-W	
T1	31	R-BL	Unit
R1	6	BL-R	
A	33	R-G	1
PG	8	G-R	
T2	35	R-S	Unit
R2	10	S-R	
A	37	BK-O	2
PG	12	O-BK	
T3	39	BK-BR	Unit
R3	14	BR-BK	
A	41	Y-BL	3
PG	16	BL-Y	

Note: The cable pair designated TA, TB is the transmit pair. The pair designated RA, RB is the receive pair.

Table 10
NT5K72 E&M Recorded Announcement connections

Lead designations	Pins	Pair color	Unit number
T0	26	W-BL	Unit
R0	1	BL-W	
SIG B	29	W-BR	0
SIG A	4	BR-W	
T1	30	W-S	Unit
R1	5	S-W	
SIG B	33	R-G	1
SIG A	8	G-R	
T2	34	R-BR	Unit
R2	9	BR-R	
SIG B	37	BK-O	2
SIG A	12	O-BK	
T3	38	BK-G	Unit
R3	13	G-BK	
SIG B	41	Y-BL	3
SIG A	16	BL-Y	

Note: The cable pair designated TA, TB is the transmit pair. The pair designated RA, RB is the receive pair.

Self-test

When the NT5K72AA E&M Tie trunk card is installed and power is applied to it, a self-test is performed on the card. The red LED on the NT5K72AA faceplate flashes three times, then remains continuously lit until the card is enabled in software. If the self-test fails, the LED will remain lit after the card is enabled.

Trunk configuration

Route Data Block

Each trunk unit on the NT5K72AA E&M trunk card is attached to a route with an associated route data block. The route data block is programmed in overlay 16.

Note: All prompts are default except for those noted in Table 5.

Table 11 LD 16 Route Data Block

Prompt	Response	Comments
REQ	NEW	
TYPE	RDB	Define a new Route Data Block
CUST	0-99	Enter customer number
ROUT	0-127	Enter route number
TKTP	TIE, (RAN), (PAG), (MUS)	Trunk type is Tie, (Recorded Announcement), (Paging), or (Music)
RTYP		RAN Type
REP	1-15	Number of repetitions (RAN)
POST	DIS, ATT	After maximum repetitions (RAN):
		Disconnect (DIS), or Route to Attendant (ATT)
STRT	IMM, DDL	Connect call to recording immediately (IMM), or at start of recording (DDL)
ACOD	XXXXXX	Trunk route access code
ICOG	ICT, OGT, IAO	Incoming trunk (ICT), Outgoing trunk (OGT, or both (IAO)
NEDC	ETH, (ORG)	Near end disconnect control from either side, or (originating) end
FEDC	ETH, (ORG)	Far end disconnect control from either end, or (originating) end

Trunk Data Block

Use overlay 14 to configure each of the trunk units on the NT5K72AA E&M trunk.

Table 12 LD 14 Route Data Block

Prompt	Response	Comments
REQ	NEW	Define a new trunk unit
TYPE	TIE, (RAN), (PAG), (MUS)	Trunk type is Tie, (Recorded Announcement), (Paging), or (Music)
TN	CC UU	Terminal number of the unit in Option 11 format Card, Unit
XTRK (see note)	XFEM	Type is IPE E&M
EMTY	TY1, (TY2)	Type 1 signaling, (Type 2)
TIMP	1200	Terminating impedance 1200 Ohms (RAN)
SIGL	EM4	4 wire E&M speech
STRI	IMM, (WNK), (DDL)	Incoming start Immediate, (Wink), (Delayed dial)
STRO	IMM, (WNK), (DDL)	Outgoing start Immediate, (Wink), (Delayed dial)
SUPN	YES, (NO)	Answer and disconnect supervision enabled, (disabled)
CLS	(NTC), (VNL)	PABX-PABX, International Leased Line
	DTN, (DIP)	Digitone, (digipulse) signaling
CFLP	XX	Music Conference Loop

Note: This prompt required only for the first unit defined on each NT5K72AA card.

Technical description

Power requirements

Table 7 lists the power requirements for the NT5K72AA E&M Tie trunk card.

Table 13 NT5K72AA Power requirements

Voltage	Active Current
+/- 15.0 V dc	150 ma
+8.5 V dc	35 ma
+ 5 V dc	110 ma
-48 V dc	80 ma

Environmental specifications

Table 8 provides the environmental specifications for the NT5K72AA E&M Tie trunk card.

Table 14 NT5K72AA Environmental specifications

Parameter	Absolute Limit
Operating temperature	10-45 degrees C, ambient
Operating humidity	20 to 80% RH (non condensing)
Storage temperature	-20 to +60 degrees C

Pad Switching

Attenuation can be selected on a per unit basis in software.

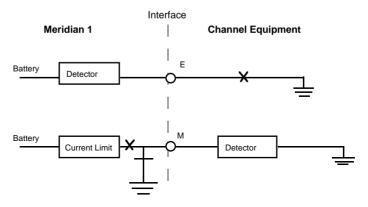
Table 15
Loss values for NT5K72AA E&M trunk card

	Analog-to-Digital	Digital-to-Analog
4-wire E&M		
International Leased line (VNL)	-3.5 dB	+3.5 dB
PBX to PBX (NTC)	-2.5 dB	+4.5 dB
PAG	not applicable	+7.0 dB
RAN/MUS	0 dB	not applicable

Note: The tolerance for the above nominal values is +/- 0.35 dB.

Trunk types description

Each unit on the NT5K72AA E&M Tie trunk card supports:


- 4-wire E&M trunk type 1 and 2
- Recorded Announcement (RAN) trunk
- Paging (PAG) trunk
- Music (MUS) trunk

4-wire E&M Type 1 trunk operation

Type 1 E&M operation uses two signaling leads, E and M, that are electrically separated from the associated speech circuit. Signals are sent on the M lead and received on the E lead as shown in Figure 1.

Note: German implementation of type 1 signaling does not allow back to back operation on the NT5K72AA E&M card.

Figure 2
E&M Type 1 signaling

Send signals

All signals are sent by connecting either a battery or ground potential to the M lead. The idle signal is sent by applying ground to the M wire, while the seize signal is sent by applying battery to the M wire.

Receive signals

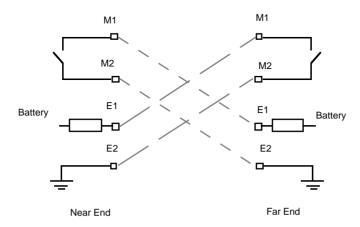
Signals are received on the E lead by detecting the conditions applied to it by external equipment. An open circuit on the E lead indicates an idle condition, ground on the E wire indicates incoming seize.

Dialing

Digits are sent by applying ground/battery pulses to the M lead (DIP mode only).

Answer

When the called party answers, the far end sends an "answer" signal to the near end E lead.


Call disconnect

Either party can disconnect the call by applying a clear signal to the M lead. The far end applies a "clear back" signal, while the near end applies a "clear forward" signal. The circuit remains busy until both clear forward and clear backward signals have been exchanged.

4-wire E&M Type 2 trunk operation

Type 2 E&M operation uses two signaling pairs, E and M, that are electrically separated from the associated speech circuit. Signals are sent on the M pair and received on the E pair as shown in Figure 2.

Figure 3
E&M Type 2 signaling

Send signals

All signals are sent in the form of a contact make or break between the two M leads.

Receive signals

Signals are received on the E lead by detecting the contact make or break applied at the far-end on the M leads.

Idle state

In the Idle state the Option 11 applies an "Idle Signal" to the M leads to indicate that it is available to receive calls.

Seize

To place an outgoing call, the Option 11 at the near end sends a seizing signal through the M leads to the far end. The incoming end (far end) recognizes the seize signal, busies the circuit against outgoing calls, and prepares to receive digits.

Dialing

Digits are sent through the near end M leads in the form of 10 pps pulses of the open-circuit condition.

Answer

When the called party answers, the far end sends an "answer" signal through the M leads

Call disconnect

Either party can disconnect the call by applying a clear signal to the M leads. The far end applies a "clear back" signal, while the near end applies a "clear forward" signal. The circuit remains busy until both clear forward and clear backward signals have been exchanged.

Table 10 provides a summary of NT5K72AA Type 2 signaling states.

Table 16 Summary of NT5K72AA Type 2 signaling states

Signal	Outgoing PBX sending condition — M Leads	Incoming PBX sending condition — M Leads
Idle	Contact break	Contact break
Seize	Contact make	_
Digit Pulse	Contact break pulses in step with dial pulses	_
Answer	_	Contact make
Clear forward	Contact break	_
Clear back	_	Contact break

Recorded Announcement/Music trunk operation

When used in the Recorded Announcement/Music mode, the trunk circuit is connected to a customer provided recorded announcement machine or a music source.

Machines supported

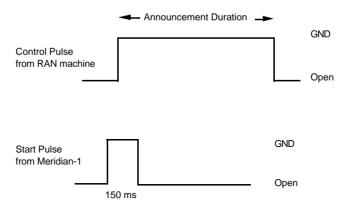
The NT5K72AA E&M Tie trunk card supports the following types of announcement machines:

- Start mode announcement machines:
- Continuous mode announcement machines

Recorded announcers supported include the Cook Digital 4-channel announcer, the Audichron HQI-112 and the Kreutler-Announcer.

Start mode

In start mode, the E&M Tie trunk card provides a startpulse to the announcement machine to begin playback of the message. The announcement source requires the following:


- an impedance of 4 ohms or less
- ground to the trunk unit when playing and an open circuit when idle. This is done through a control lead to the trunk circuit.
- default signal level of -9 dBm (in 600Ω) adjustable to a level of 10 dBm.

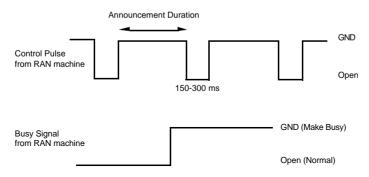
To start the announcement, the NT5K72AA E&M Tie trunk card provides a momentary ground signal (150 ms) to the source. The announcement machine should then start playing its message.

The NT5K72AA trunk card expects status information from the announcement machine, that is, whether it is idle or playing. For this reason, the announcement machine requires a control lead to the trunk circuit.

Figure 3 shows recorded announcement in start mode.

Figure 4
Recorded announcement - start mode

Continuous mode


The requirements for continuous mode announcement machines are as follows:

- an impedance of 4 ohms or less
- generation of a control pulse (150 300 ms) at the start of the announcement period
- default signal level of -9 dBm (in 600Ω) adjustable to a level of 10 dBm.

The announcement machine may provide a separate busy signal when the machine is recording or erasing a message or if the machine is malfunctioning. The busy signal will be used by the Option 11 for maintenance purposes.

Figure 4 shows recorded announcement in continuous mode.

Figure 5
Recorded announcement - continuous mode

Music source

The music source should provide an impedance of 600Ω . The default signaling level should be -9 dBm (in 600Ω) adjustable to a level of 10 dBm.

Paging trunk operation

When used in the paging mode, the trunk circuit is connected to a customer-provided paging amplifier system. When accessed, the card provides a loop closure. In a typical application, the loop closure will cut off a music supply and switch the paging trunk transmission path to the paging amplifier.

Direct Inward Dial/Direct Outward Dial Trunk Card

Functional description

The NT5K36AB and the NT5K36BA Direct Inward Dial/Direct Outward Dial trunk cards provide the interface between the Option 11 system and up to four analog trunks. The NT5K36AB supports IKZ Type Signalling at the Central Office. The NT5K36BA supports SKZ50 Type Signalling. Both cards can be installed in any PE slot that supports intelligent peripheral equipment (IPE).

Note: The NT5K36BA is only to be connected to Central Offices with a Type S-90-11 DID converter.

Common features

Each NT5K36AB/NT5K36BA DID/DOD trunk card:

- indicates self-test status during an automatic or manual self-test.
 Self-test pass is indicated on the faceplate LED.
- converts transmission signals from analog-to-digital and from digital-to-analog for up to 4 audio paths
- disables individual circuits or the entire board under software control
- provides internal 16 kHz pulse detection

- provides transmission performance according to German specifications
- provides the correct signaling impedances and voltages to operate with the German central office.

Physical description

Connections

The NT5K36AB and the NT5K36BA DID/DOD trunk cards have four units. Each trunk unit on **a** card connects to the backplane through an 80-pin connector. The backplane is cabled to the input/output (I/O) panel, and the I/O panel is cabled to the cross-connect terminal.

At the cross-connect terminal, each unit connects to external apparatus by tip and ring leads.

Installation

Tables 1 to 3 provide cross connect information for the NT5K36AB DID/DOD trunk card. Connections for the NT5K36BA are identical.

Table 17 NT5K36 DID/DOD Trunk connections

Lead	Pins	Pair color	Unit number
T0 R0	26 1	W-BL BL-W	
	27 2	W-O O-W	Unit
	28 3	W-G G-W	0
	29 4	W-BR BR-W	
T1 R1	30 5	W-S S-W	
	31 6	R-BL BL-R	Unit
	32 7	R-O O-R	1
	33 8	R-G G-R	
T2 R2	34 9	R-BR BR-R	
	35 10	R-S S-R	Unit
	36 11	BK-BL BL-BK	2
	37 12	BK-O O-BK	
T3 R3	38 13	BK-G G-BK	
	39 14	BK-BR BR-BK	Unit
	40 15	BK-S S-BK	3
	41 16	Y-BL BL-Y	

Trunk configuration

Route Data Block

Each trunk unit on the NT5K36AB or NT5K36BA DID/DOD card is attached to a route with an associated route data block. The route data block is programmed in LD 16.

Note: All prompts are defaulted except for those noted below. Default values are shown in brackets.

Table 18 LD 16 Route Data Block

Prompt	Response	Comments
REQ	NEW	
TYPE	RDB	Define a new Route Data Block
CUST	0-99	Enter customer number
ROUT	0-127	Enter route number
TKTP	DID	Trunk type is Direct Inward Dial
ICOG	IAO, ICT	Incoming and Outgoing or Incoming only trunk
ACOD	XX	XX=trunk route access code
CNTL	YES	Change controls or timers
	_	- Continued —

Prompt	Response	Comments
TIMR	EOD 10112	Set End of Dial Timer to 10112ms for NT5K36AB
	or EOD 20096	Set End of Dial Timer to 20096ms for NT5K36BA
	ICF 0	Set Incoming Flash timer to 0 ms
	OGF	Set Outgoing Flash timer to 0 ms
	GTI 128	Set Guard Timer Incoming to 128
	GTO 2048	Set Guard Timer Outgoing to 2048
	DSI 360000	Set Disconnect Timer to 360000 ms (6 minutes)
NEDC	ETH	Near end disconnect control from either end
FEDC	ETH	Far end disconnect control from either end
PRDL	BSY	Return Busy Tone on partial dial timeout
EOS	BSY	Send End of Selection (number received) signal and Busy signal if required
ACKW	YES	Seize acknowledge required
ВТТ	100	Busy tone timer 100 seconds

Trunk Data Block

Use overlay 14 to configure each of the trunk units on the NT5K36AB or NT5K36BA DID/DOD trunk cards. Default values are shown in brackets.

Table 19 LD 14 Trunk Data Block

Prompt	Response	Comments
REQ	NEW	Define a new trunk unit
TYPE	DID	Direct Inward Dial
TN	CC UU	Terminal number of the unit in Option 11 format Card, Unit
XTRK (see note)	XDID	Type is IPE DID
SIGL	EAM	EAM type signaling
STRI	IMM	Incoming start is immediate dial
STRO	IMM	Outgoing start is immediate dial
SUPN	NO	Answer and disconnect supervision required
CLS	SHL, (LOL) DIP	Attenuation pads in, (out) Digipulse Dialling only

Note: This prompt is required only for the first unit defined on each NT5K36AB card.

Self-test

When the card is installed, the red Light Emitting Diode (LED) on the faceplate flashes as the self-test runs. If the self-test completes successfully, the card is automatically enabled (if it has been configured in software) and the LED goes out. If the self-test fails, the LED will remain lit.

Technical description

The technical details of the NT5K36AB and the NT5K36BA Direct Inward Dial/Direct Outward Dial trunk cards are given in this section.

Power requirements

Table 4 lists the power requirements for the NT5K36AB DID/DOD trunk card. Power requirements for the NT5K36BA DID/DOD trunk card are identical.

Table 20 NT5K36 power requirements

Voltage	Active current
+15 V dc	306 ma
-15 V dc	306 ma
+8.5 V dc	250 ma
-48 V dc	378 ma
+ 5 V dc	150 ma

Note: The maximum allowable current imbalance between the +/- 15V rails is 100 ma per circuit card.

Environmental specifications

Table 5 lists the environmental specifications for the NT5K36AB DID/DOD card. Specifications for the NT5K36BA DID/DOD card are identical.

Table 21 NT5K36 Environmental specifications

Parameter	Recommended temperature /humidity
Operating temperature	0 to +45 degrees C
Storage temperature	- 45 to +70 degrees C
Operating humidity	10 to 95% relative humidity
Storage humidity	0 to 95% relative humidity

PAD switching

Loss values for the NT5K36AB DID/DOD card are given in Table 6. Loss values for the NT5K36BA DID/DOD card are identical.

Table 22 NT5K36 PAD switching

	Short Line	Long Line	
Analog-to-Digital loss	-5 dB	-7 dB	
Digital-to-Analog loss	+2 dB	0 dB	

Note: Tolerance for the above nominal values is ± -0.55 dB.

Direct Inward Dial/Direct Outward Dial description

This section describes the signaling of the NT5K36AB DID/DOD trunk card (IKZ) and of the NT5K36BA DID/DOD trunk card (SKZ50). Signaling is explained by using "state tables", which outline the potentials or impedances required at the central office or Option 11 for various call states.

For the "state tables" provided in this section, the following items apply:

- "Current feed number" refers to the feed diagrams outlined in German Regulatory Requirement FTZ 123R1 (Oct 89) part 13, section 4. This only applies to state tables for the NT5K36AB.
- Resistance values represent the resistances applied to analog ground on a given wire by the Option 11 or the central office.
- For all states there are separate tables for the NT5K36AB and the NT5K36BA.

Central office types supported

The NT5K36AB DID/DOD card supports three central office types: IKZ1, IKZ2, and IKZ3. Central offices IKZ1 and IKZ2 interact with the NT5K36AB trunk card by presenting specific voltages and resistances. Central office IKZ3 interacts with the NT5K36AB by presenting specific current feeds.

The NT5K36BA DID/DOD card supports three central office types which all operate using the SKZ50 signaling method but whose terminating resistances at the central office vary in a number of states.

Central Office Option 1 is for Local Traffic. Option 2 is for Long

Distance Traffic. Option 3 is for Manual Operator Position which is generally not required.

It is important to note that the NT5K36BA DID/DOD card can only be connected to central offices which have an S-90-11 DID converter

Modes of operation

Each unit on the NT5K36AB DID/DOD card and each unit on the NT5K36BA DID/DOD card is capable of operating as a DID/DOD trunk. There are three modes of operation for the NT5K36AB circuit card:

- Outgoing calls placed by Option 11
- Short distance incoming calls from the central office
- Long distance incoming calls from the central office.

There are two modes of operation for the NT5K36BA circuit card:

- Outgoing calls placed by Option 11
- Incoming calls from the central office. There is no differentiation between short distance and long distance calls in SKZ50 signaling.

Outgoing calls

Idle state

The condition of the Option 11 and the central office in the idle state is given in Table 7 for NT5K36AB and Table 8 for NT5K36BA.

Table 23 Idle state NT5K36AB

	Option 11		Central Office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	greater than 13 K	-60	0.8 to 1.1K	current feed 1
Ring	-60	0.6 to 1.2 K	Ground	greater than 13.1K	13 to 300K

Table 24 Idle state - NT5K36BA

	Option 11		Central Office (CO) (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	Ground	greater than 13 K	-60	8501.15ΚΩ
Ring	-60	0.6 to 1.2 K	Ground	greater than or equal to 6.4K

Outgoing Seize

Table 9 shows the condition of the Option 11 and the central office when the NT5K36AB seizes a circuit to place an outgoing call. Table 10 shows the condition of the Option 11 and the central office when the NT5K36BA seizes a circuit to place an outgoing call.

Table 25 Outgoing seize

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	less than 0.8K	-60	0.8 to 1.1K	current feed 3
Ring	-60	0.6 to 1.2K	Ground	greater than 13.1K	13 to 300K

Table 26 Outgoing seize - NT5K36BA

			Central Office (CO) (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	Ground	less than 0.8K	- 60	850 to 1.15K
Ring	-60	0.6 to 1.2K	Ground	greater than or equal to 6.4K

Seizure acknowledge

The central office acknowledges seizure by the Option 11, as shown in Table 11 for the NT5K36AB and Table 12 for the NT5K36BA.

Table 27
Outgoing seizure acknowledge

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	less than 0.8K	Ground	less than 1.1K	balanced loop
Ring	-60	0.6 to 1.2K	-60	0.9 to 1.5K	current feed 6

Table 28
Outgoing seizure acknowledge - NT5K36BA

	Option 11		Central Office (CO) (SKZ50) (Option 1 Termination)		CO (SKZ50) (Option 2 Termination)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance
Tip	Ground	less than 0.8K	Ground	0.45 to 0.55K	less than 0.02K
Ring	-60	0.6 to 1.2K	-60	0.45 to 0.55K	1.8 to 2.4K

Option 11 low impedance loop

When the Option 11 receives the seizure acknowledge signal, it places a low resistance dc loop across the tip and ring leads. Table 13 shows the state for NT5K36AB and 14 for NT5K36BA.

Table 29
Option 11 low impedance loop

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	_	-l- l f	Ground	0.8 to 1.1K	balanced loop
Ring	_	dc loop of less than .44K	-60	0.9 to 1.5K	current feed 6

Table 30
Option 11 low impedance loop - NT5K36BA

	Option 11		Central Office (CO) (SKZ50) (Option 1 Termination)		CO (SKZ50) (Option 2 Termination)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance
Tip	_	dc loop of	Ground	0.45 to 0.55K	less than 0.02K
Ring	_	less than .44K	-60	0.45 to 0.55K	1.8 to 2.4K

Dial tone from central office

The central office provides dial tone to the Option 11 (425 or 450 Hz +/- 10% for IKZ signaling and 425 ± 25 Hz for SKZ50). The states of the Option 11 and the central office during dial tone are given in Table 15 for NT5K36AB and Table 16 for NT5K36BA.

Table 31
Dial tone from central office

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	_		Ground	0.42 to 0.55K	balanced loop
Ring	_	dc loop less than 0.44K	-60	0.42 to 0.55K	current feed 6

Table 32
Dial tone from central office - NT5K36BA

	Option 11		Central office (CO) (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	_	dc loop less	Ground	0.38 to 0.575K
Ring	_	than 0.44K	-60	0.38 to 0.575K

Dialing

If a dial tone detector is present on the Option 11 system, the detector will ensure that valid dial tone from the central office is present for more than one second. The Option 11 is then ready to sent digits to the central office. (If no dial tone detector is present, the Option 11 is ready to send digits as soon as dial tone is received from the central office).

The Option 11 sends digits in the form of outpulsing. One digit consists of a pulse plus a pause. In the pulse condition, a high resistance loop of greater than 100K is placed across the tip and ring leads. In the pause condition, a dc loop of less than 0.22K is present across the tip and ring leads. This applies to both the NT5K36AB and the NT5K36BA.

Ringing (called line free)

When a call is ringing through to the far end, the central office provides a "line free" tone to the Option 11. The states of the Option 11 and the central office are the same as outlined in Table 15 for NT5K36AB and Table 16 for NT5K36BA

Busy (called line busy)

If the called party is busy and cannot take the call, the central office provides the Option 11 with busy tone. The states of the Option 11 and the central office are given in Table 15 for NT5K36AB and Table 16 for NT5K36BA.

Answer

When the call is answered, the central office applies metering pulses. The pulses are detected by the PPM detector and counted by the on-board microprocessor.

The NT5K36AB and the NT5K36BA trunk cards support both buffered and unbuffered PPM:

- in the case of unbuffered PPM, a valid pulse is passed on to the central processing unit (CPU) as soon as it is detected.
- In the case of buffered PPM, the NT5K36AB and the NT5K36BA microprocessor counts 256 pulses before passing an "overflow" to the CPU. The residual count (less than 256) is passed to the CPU when requested at the end of a call.

The states of the Option 11 and the central office are given in Table 15 for NT5K36BA and Table 16 for NT5K36BA.

Option 11 call disconnect

The Option 11 has control over call disconnect; far end release is not possible. To disconnect the call, the Option 11 removes the dc loop between the tip and ring leads and returns to the idle state.

The central office will return to the idle state when it receives the clear back signal from the Option 11. If the central office does not return to the idle state within one second of the Option 11 going idle, both the NT5K36AB DID/DOD card and the NT5K36BA DID/DOD card will go into a troubled state and will try to force a release.

Short distance incoming calls

Idle state

The idle state is given in Table 7 for NT5K36AB and Table 9 for NT5K36BA.

Incoming seize

Table 17 shows the condition of the Option 11 and the central office when the central office seizes an NT5K36AB circuit for an incoming call.

Table 18 shows the condition of the Option 11 and the central office when the central office seizes an NT5K36BA circuit for an incoming call.

Table 33 Incoming seize NT5K36AB

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	greater than 13K	-60	0.8 to 1.1K	current feed 1
Ring	-60	0.6 to 1.2K	Ground	0.35 to 0.55K	0.35 to 0.45K

Table 34 Incoming seize - NT5K36BA

	Option 11		Central office (CO) (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	Ground	greater than 13K	-60	0.85 to 1.15K
Ring	-60	0.6 to 1.2K	Ground	0.225 to 0.345K

Seizure acknowledge

The Option 11 acknowledges seizure by the central office, as shown in Table 19 for NT5K36AB and Table 20 for NT5K36BA .

Table 35 Incoming seizure acknowledge

			Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	-60	greater than 0.5K	-60	0.8 to 1.1K	current feed 1
Ring	Ground	open circuit	Ground	0.35 to 0.55K	0.35 to 0.45K

Table 36 Incoming seizure acknowledge - NT5K36BA

	1		Central office (CO) (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	-60	greater than 0.5K	-60	0.85 to 1.15K
Ring	Ground	open circuit	Ground	0.225 to 0.345K

Waiting for dial pulses

After seizure acknowledgment, the Option 11 waits for dial pulses from the central office. This is shown in Table 21 for the NT5K36AB trunk card and in Table 22 for the NT5K36BA trunk card.

Table 37
Waiting for dial pulses

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	-60	greater than 0.5K	_	dc loop 6.5 to 110K with 1.5 μF in parallel	dc loop of 7 to 110K
Ring	Ground	greater than 90K	_		

Table 38 Waiting for dial pulses-NT5K36BA

	Option 11		CO (SKZ50 Option 1)		CO (SKZ50 Option 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance
Tip	-60	greater than 0.5K	_	dc loop 90 to 110K with 1 μF in parallel	dc loop 13K
Ring	Ground	greater than 90K	_	•	

	Option 11		(SK	CO Z50 Option 2)
Wire	Voltag e	Resistance	Voltage	Resistance
Tip	-60	greater than 0.5K	- 60	180 to 220K with 0.25 μF in parallel
Ring	Ground	greater than 90K	Ground	0.9 to 1.1K

Receiving digits

For the NT5K36AB there are two possible dialling types - long distance signalling and short distance signalling. Long distance signalling is not part of the SKZ50 protocol and so only short distance signalling applies for the NT5K36BA. This means that for the first dialpulse of each digit the operation of the NT5K36AB and the NT5K36BA differ as follows:

The central office sends digits by applying ground pulses on the tip lead. For the NT5K36AB the Option 11 switches in a "long distance detector" on the ring lead during the first dial pulse of each digit. This first dial pulse is shown in Table 23. After the first dial pulse, the long distance detector is removed. Subsequent dial pulses are shown in Table 24 for the NT5K36AB. The operation of the NT5K36BA is identical for all dialpulses and is shown in Table 26 Table 26 shows the pause state for the NT5K36AB and Table 27 shows the pause state for the NT5K36BA.

Table 39
First dial pulse NT5K36AB

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	-60	greater than 0.5K	Ground	0.02K	0.05K
Ring	Ground	greater than 12.7K	potentials as for Table 3-14-1	potentials as for Table 3-14-1	potentials as for Table 3-14-1

Table 40 Subsequent dial pulses - NT5K36AB

	Meridian 1		CO (SKZ50 Option 1)		CO (SKZ50 Option 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance
Tip	-60	greater than 0.5K	_	dc loop 90 to 110K with 1 μF in parallel	dc loop 13K
Ring	Ground	greater than 90K	_	•	

Table 41 Subsequent dial pulses NT5K36BA

	Meridian 1		CO (SKZ50)		
Wire	Voltage	Resistance	Voltage	Resistance	
Tip	-60	greater than 0.5K	Ground	less than or equal to 0.02K	
Ring	Ground	greater than 90K	- 60	0.45 to 0.55K	

Table 42
Pause NT5K36AB

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	-60	greater than 0.5K	open circuit	_	open circuit
Ring	Ground	greater than 90K	potentials as for Table 3-14-1	potentials as for Table 3-14-1	potentials as for Table 3-14-1

Table 43
Pause - NT5K36BA

	Option 11		CO (SKZ50)		
Wire	Voltage	Resistance	Voltage	Resistance	
Tip	-60	greater than 0.5K	potentials as for Table 3-14-2	resistance as for Table 3-14-2	
Ring	Ground	greater than 90K	potentials as for Table 3-14-2	resistance as for Table 3-14-2	

Ringing (called line free)

If the trunk circuit called is free, the Option 11 will provide the central office with ringback tone. The states of the Option 11 and the central office are given in Table 21 for the NT5K36AB and in Table 22 for NT5K36BA.

Busy (called line busy)

If the trunk circuit called is busy, the Option 11 provides the central office with busy tone. The states of the Option 11 and the central office is given in Table 21 for NT5K36AB and Table 22 for NT5K36BA.

Answer

When the called party answers, the Option 11 reverses the battery on the tip and ring leads and a speech path is established.

Table 44 Speech state NT5K36AB

	Option 11		Central office (IKZ 1,2)	Central office (CO) IKZ 1,2)	
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	90 to 300K	_	dc loop 6.5 to 110K with 1.5	dc loop less than or equal to
Ring	-60	0.65 to 0.85K	_	μF in parallel	110K

Table 45 Speech State - NT5K36BA

	Option 11		CO (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	Ground	90 to 300K	potentials as for Table 3-14-2	resistance as for Table 3-14-2
Ring	-60	0.65 to 0.85K	14510 0 112	14510 0 1 1 2

Option 11 call disconnect

The NT5K36AB disconnects the call by applying ground pulses to the tip lead. The NT5K36BA disconnects the call by applying continuous ground to the tip lead. The central office sends a 50 Hz release signal to the Option 11. The Option 11 then returns to the idle state.

If the central office does not send a release signal within 5 minutes of the Option 11 applying ground pulses, the DID/DOD trunk card goes into a troubled state and attempts to force a release.

Central office disconnect

The central office disconnects the call by sending a 50 Hz (90 Vrms) release signal. The Option 11 detects the signal and returns to the idle state.

Long distance incoming calls (N/A for NT5K36BA)

Idle state

The idle state is given in Table 15.

Incoming seize

Incoming seize for long distance calls is the same as given in Table 17.

Seizure acknowledge

Seizure acknowledge for long distance calls is the same as given in Table 19.

Waiting for dial pulses

The waiting for dial pulse condition is given in Table 21.

Receiving digits

The central office sends digits by applying ground pulses on the tip lead. During the first dial pulse of each digit, the Option 11 switches in a "long distance detector" on the ring lead.

For long distance calls, the central office sends a long distance signal at the beginning of the first dial pulse of each digit. This signal informs the Option 11 that an end of selection (EOS) signal is required.

The long distance signal is shown in Table 30.

Table 46 Long distance signal

	Option 11		Central office (CO) (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	-60	greater than 0.5K	Ground	0.02K	0.5K
Ring	Ground`	greater than 12.7K	-60	less than or equal to 0.66K	current feed 1

After sending the long distance signal, the central office returns to the state shown in Table 23. If no pulse is received, the call continues a short distance call (see previous section).

If a dialing timeout occurs, Option 11 software sends an end of selection (EOS) signal and an EOS/Busy signal. The call continues as a busy extension.

End of selection (EOS) signal

After the last valid dial pulse has been received, the Option 11 sends an End of selection (EOS) signal. This signal informs the central office that the routing data has been received or that a dial timeout has occurred. The EOS signal is shown in Table 31.

Table 47 EOS signal

	Option 11		Central offi (IKZ 1,2)	Central office (CO) (IKZ 1,2)	
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	0.65 to 0.85K	-	dc loop 6.5 to 110K with 1.5	dc loop of 7 to
Ring	-60	0.65 to 0.85K	_	μF in parallel	9K

End of dialing

When dialing is complete, the Option 11 enters the state given in Table 32. After this state, the trunk switches to the ringing condition or sends a busy signal, depending on the status of the called party.

Table 48
End of dialing

			Central office (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	-60	greater than 0.5K	_	dc loop 6.5 to 110K with 1.5	dc loop of
Ring	Ground	greater than 90K	_	μF in parallel	7 to 9K

Ringing (called line free)

If the called line is free, the Option 11 provides ringing tone. The states of the Option 11 and the central office are given in Table 32.

Busy (called line busy)

If the called line is busy, a busy signal is sent to the central office. Table 33 shows the busy signal.

Table 49 Busy signal

	Option 11		Central office (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	0.65 to 0.85K 0.65 to 0.85K	_	dc loop 6.5 to 110K with 1.5 μF in parallel	dc loop of 7 to 9K
Ring	-60			, p	

After sending the busy signal, the Option 11 switches to the state given in Table 32 and provides busy tone to the central office.

Answer

When the called party answers, the Option 11 switches to the state given in Table 33 for 100 to 180 ms. After this state, the call proceeds as a short distance call (see Table 28).

Option 11 call disconnect

The Option 11 disconnects the call by applying ground pulses to the tip lead. The central office detects the signal and sends a release signal to the Option 11. The Option 11 then returns to the idle state.

If the central office does not send a release signal within 5 minutes of applying ground, the DID/DOD trunk card goes into a troubled state and attempts to force a release.

Central office disconnect

The central office disconnects the call by sending a 50 Hz release signal. The Option 11 detects the signal and returns to the idle state.

Troubled or barred condition

When normal call progression does not take place, the Option 11 will attempt to force the central office into an idle state. The NT5K36AB accomplishes this by sending trigger pulses to the central offices, as shown in Table 34. The NT5K36BA accomplishes this by applying continuous ground to its tip lead as shown in Table 35.

Table 50
Trigger pulses from NT5K36AB

	Option 11		Central office (IKZ 1,2)		CO (IKZ 3)
Wire	Voltage	Resistance	Voltage	Resistance	Resistance/ Feed
Tip	Ground	greater than 13K	Any state	except idle	
Ring	-60	0.6 to 1.2K			

Table 51
Ground Pulse from NT5K36BA

	I		Central office (SKZ50)	
Wire	Voltage	Resistance	Voltage	Resistance
Tip	Ground	greater than 13K	Any state	except idle
Ring	-60	0.6 to 1.2K		

After the NT5K36AB sends the trigger pulse, (or continuous ground pulse in the case of the NT5K36BA), the Option 11 will wait 80 to 1000 ms for the central office to return to the idle state or send a release signal. When this happens, the Option 11 will return to the idle state.

If the central office does not go idle or send a release signal, the Option 11 will continue to send trigger pulses ,(or continuous ground pulse in the case of the NT5K36BA) , until an idle state or release signal is detected.

Troubled state

The conditions which will force the Option 11 to enter the troubled state are as follows:

- The central office does not go idle or send a release signal within five minutes of the Option 11 releasing an incoming call.
- The central office does not return to the idle state within one second of the Option 11 releasing an outgoing call.
- The central office removes battery from the tip wire during the idle state.
- The central office does not release a call within one minute of the call terminating on a busy or invalid station.

Call bar state

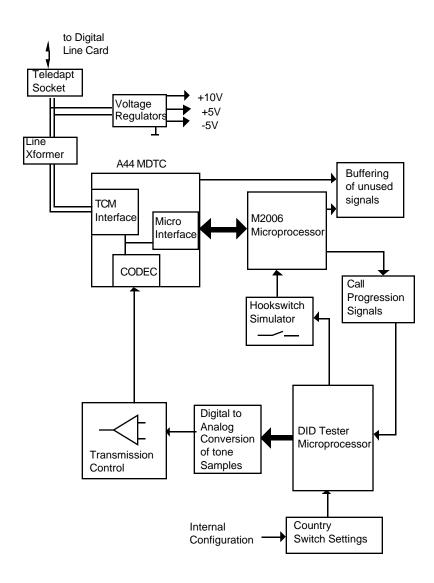
If any of the four conditions mentioned above occur, an alarm signal is sent to the central processing unit (CPU). The CPU interprets the signal as a line break and sends a TRK501 message to the teletype (TTY) or lights a lamp on the console. Hardware busies the trunk against outgoing calls. The status of the trunk in overlay 32 is "Busy Barred".

The trunk can be disabled while it is in the busy barred state. However, if it is enabled before the fault is cleared, an error message will be generated. When the fault condition is cleared, a TRK502 message is send to the TTY and the software and hardware are placed in the idle state.

Direct Inward Dial Auto Answer Circuit (DID Tester)

Functional description

The NT5K92AA Direct Inward Dial (DID) Auto Answer Circuit is used to test the condition of the DID lines on an Option 11 system. It does the following:


- answers an incoming DID call
- holds the call for a predetermined length of time
- · sends tones or remains silent, then
- disconnects the call.

Note: specific operational requirements for Germany are given at the end of this section.

If the DID Auto Answer Circuit can not be accessed, or if any part of the test fails, the DID card is assumed to be faulty.

Figure 1 provides a block diagram of the NT5K92AA Auto Answer Circuit.

Figure 6 NT5K92AA Block diagram

Common features

The NT5K92AA Auto Answer Circuit has the following features:

- supports the NT5K36AB German DID card for systems using intelligent peripheral equipment (IPE). (The NT5K36AB DID card is described in the previous section of this document).
- supports the NTD9878 DID card for systems using existing peripheral equipment (EPE).
- provides an option switch for selecting the country of operation (Germany, Switzerland or Belgium)
- connects to a single unit of a digital line card (DLC) or integrated services digital line card (ISDLC).
- processes an incoming call in the same manner as an M2006 meridian modular telephone
- has its own pre-defined directory number (DN).

Physical description

The NT5K92AA DID Auto Answer circuit consists of a circuit card packaged in a plastic box. It can be mounted on the floor using four anti-static feet, or it can be mounted on the wall next to the cross connect terminal. The NT5K92AA measures as follows:

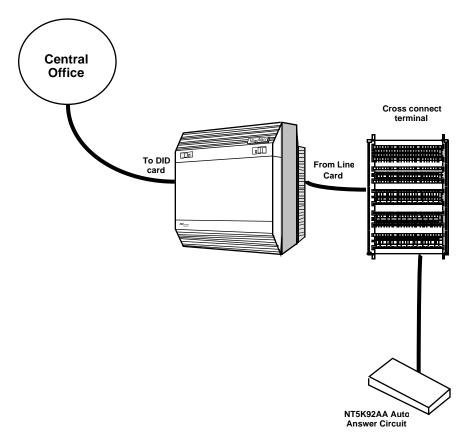
Length	Width	Depth (with feet)
250 mm (1 in.)	132 mm (5.2 in.)	42 mm (1.7 in.)

Switch settings

An option setting on the NT5K92AA configures the tester for one of three countries of operation: Germany, Switzerland, or Belgium. The switch is located on the circuit board inside the plastic box.

To set the option switch, follow the steps given below:

- make sure the NT5K92AA DID Auto Answer circuit is not connected to the Option 11 system.
- turn the NT5K92AA unit upside-down so that the bottom is facing up.
- remove the four screws located on each corner of the box. Remove the base cover.
- set switch S1 according to the country of operation:


Country	Switch S1 0=OFF1=ON			
	1	2	3	4
Germany	0	0	1	0
Switzerland	0	0	0	1
Belgium	0	1	0	0

• replace the base cover and re-insert the four screws.

Connections

The NT5K92AA DID Auto Answer Circuit connects to a single unit of a digital line card (DLC) or integrated services digital line card (ISDLC). Figure 2 provides an overview of NT5K92AA connections.

Figure 7
NT5K92AA DID Auto Answer Circuit connections

Cabling

To install the NT5K92AA Auto Answer Circuit, use a teledapt cable, as when wiring an M2006 telephone.

Software configuration

The NT5K92AA Auto Answer Circuit is configured as an M2006 Meridian modular telephone. The extension number used is provided by the German regulatory authority.

To configure the NT5K92AA Auto Answer Circuit, use overlay 11. All prompts are default except for those given in Table 1.

Table 52 Configuring NT5K92AA in LD 11

Prompt	Response	Comments
REQ	NEW	Define a new digital telephone set
TYPE	2006	Digital set type M2006
KEY	0 SCR XXXX	Key 0, Single Call Ringing, XXXX=extension number

LED indicators

There are two LEDs, one red and one green, located on the front of the NT5K92AA Auto Answer Circuit. Table 2 provides a summary of the NT5K92AA LEDs.

Table 53 NT5K92AA LEDs

LED	State	Description
Red	Lit	NT5K92AA is connected to digital line card and is drawing power from it
Green	Off	NT5K92AA is idle
	Flashing	Incoming call present
	Lit	Call has been answered

Technical description

The technical requirements of the NT5K92AA Auto Answer Circuit are outlined below.

Power requirements

The NT5K92AA Auto Answer Circuit draws power from the +/- 15V rails supplied by the digital line card. The maximum power draw required is 60 ma.

The 30V from the line card is regulated to provide the +10V, +5V, -5V and ground used to power the internal circuitry of the NT5K92AA Auto Answer Circuit.

Environmental specifications

Table 3 provides the environmental requirements for the NT5K92AA Auto Answer Circuit.

Table 54 NT5K92AA Environmental specifications

Parameter	Recommended temperature /humidity
Operating temperature	0 to +45 degrees C
Storage temperature	- 45 to +70 degrees C
Operating humidity	10 to 95% relative humidity
Storage humidity	0 to 95% relative humidity

German operational requirements

Signaling for the NT5K92AA Auto Answer circuit is the same as for a digital set. In Germany, the NT5K92AA Auto Answer Circuit does the following:

- detects an incoming call from the digital line card
- answers the incoming call within 100 ms of the DID card sending the "End of Selection" (EOS) signal to the central office. The call is answered by sending an answer message to the digital line card.
- holds the call for 3 seconds (plus or minus 1 second) after the call has been answered
- disconnects the call by sending a release message to the digital line card.

Meridian 1

Intelligent peripheral equipment circuit cards for Germany

Option 11 - Description and Installation

© 1993,1994 Northern Telecom
All rights reserved
Information is subject to change without notice.
Northern Telecom reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules.

SL-1 and Meridian 1 are trademarks of Northern

Telecom.

Publication number: Supplement to 553-3011-210

Document release: Provisional 2.0

Date: May 1994 Printed in Canada