Meridian 1

General Maintenance Information

Document Number: 553-3001-500
Document Release: Standard 15.00
Date: January 2002

Copyright © 1990–2002 Nortel Networks
All Rights Reserved

Printed in Canada

Information is subject to change without notice. Nortel Networks reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules, and the radio interference regulations of Industry Canada. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

SL-1 and Meridian 1 are trademarks of Nortel Networks.
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2002</td>
<td>Standard 15.00. This is a global document and is up-issued for Meridian 1 Release 25.40.</td>
<td></td>
</tr>
<tr>
<td>April 2000</td>
<td>Standard 14.00. This is a global document and is up-issued for X11 Release 25.0x. Document changes include removal of: redundant content; references to equipment types except Options 11C, 51C, 61C, and 81C; and references to previous software releases.</td>
<td></td>
</tr>
<tr>
<td>June 1999</td>
<td>Standard, release 13.00. This document is reissued for text edits. Due to the extent of the changes, revision bars are not used.</td>
<td></td>
</tr>
<tr>
<td>December 1995</td>
<td>Standard, release 11.00. This document is reissued to include information on the NT9D19 Call Processor Card. Changes are noted by revision bars in the margins.</td>
<td></td>
</tr>
<tr>
<td>July 1995</td>
<td>Standard, release 10.00. This document is reissued to include information on Meridian 1 option 81C and text edits. Changes are noted by revision bars in the margins.</td>
<td></td>
</tr>
<tr>
<td>December 1994</td>
<td>Standard, release 9.0. This document is reissued to include the information on Meridian 1 option 51C and other edits. Changes to technical content are noted by revision bars in the margins.</td>
<td></td>
</tr>
</tbody>
</table>
April 1994
Standard, release 8.0. This document is reissued to include the information on Meridian 1 option 61C. Changes to technical content are noted by revision bars in the margins.

April 1993
Standard, release 6.0. Changes to technical content are noted by revision bars in the margins.

August 1993
Standard, release 7.0. Changes to technical content are noted by revision bars in the margins.

December 1992
Standard, release 5.0. This document is reissued to include information on system option 81 and equipment required for compatibility with X11 release 18. Only new information and changes to technical content are noted by revision bars in the margins.

December 1991
Standard, release 4.0. This document is reissued to include technical content updates. Due to the extent of the changes, revision bars are not used.

July 1990
Standard, release 3.0.

February 1990
Standard, release 2.0.

January 1990
Standard, release 1.0.
Contents

About this document 7
Precautions 9
Communicating with the system 15
Routine maintenance 25
Hardware maintenance tools 27
Software maintenance tools 49
User reports 61
Technical assistance service 63
About this document

This document is a global document. Contact your system supplier or your Nortel Networks representative to verify that the hardware and software described is supported in your area.

This document describes maintenance features for all Meridian 1 systems. The chapters in this document describe the following:

- Precautions: guidelines to avoid personal injury and equipment damage
- Communicating with the system: methods for exchanging information with the system
- Routine maintenance: requirements for servicing batteries and air filters
- Hardware maintenance tools: descriptions of circuit card hardware, CPU controls, system alarms, and system monitor indicators
- Software maintenance tools: descriptions of diagnostic programs, the History File, and interactive diagnostics
- User reports: problems typically reported by users
- Customer technical assistance service: information on Nortel Networks Technical Assistance Centers and services

This document does not provide procedures for locating faults, clearing faults, or replacing equipment. See Fault Clearing (553-3001-510) to locate and clear faults. See Hardware Replacement (553-3001-520) to replace faulty equipment.
References

See the Meridian 1 Planning and Engineering Guide for the following:

- Library Navigator (553-3001-000)
- System Overview (553-3001-100)
- Equipment Identification (553-3001-154)

See the Meridian 1 installation and maintenance guide for the following:

- System Installation Procedures (553-3001-210)
- Circuit Card: Installation and Testing (553-3001-211)
- Telephone and Attendant Console: Installation (553-3001-215)
- Fault Clearing (553-3001-510)
- Hardware Replacement (553-3001-520)

For an overview of software architecture, procedures for software installation and management, and a detailed description of all features and services see the following two documents:

- System Management (553-3001-300)
- Features and Services (553-3001-306)

See the Administration (553-3001-311) for a description of all administration programs, Maintenance (553-3001-511) for maintenance programs, and the System Messages (553-3001-411) for interpreting system messages.
Precautions

Contents

The following are the topics in this section:

Reference list ... 9
General precautions 10
Circuit cards ... 10
Data disks ... 12

Reference list

The following are the references in this section:

• *X11 System Management (553-3001-300)*
General precautions

Meridian 1 equipment is sensitive to static electricity and environmental conditions. Follow the precautions in this chapter to avoid personal injury or equipment damage.

WARNING
Module covers are not hinged; do not let go of the covers. Lift covers away from the module and set them out of your work area.

WARNING
To avoid the danger of electric shock, be very careful when you work with power equipment and connections. Warning notices are displayed and must be heeded.

There are no user repairable components or assemblies in the power system. If a power unit fails, the complete unit must be replaced. Do not disassemble a power unit under any circumstances because of the risk of electric shock.

Circuit cards

WARNING
Circuit cards may contain a lithium battery. There is a danger of explosion if the battery is incorrectly replaced. Do not replace components on any circuit card; you must replace the entire card.

Dispose of circuit cards according to the manufacturer’s instructions.

WARNING
To avoid damage to circuit cards from static discharge, wear a properly connected antistatic wrist strap when you work on Meridian 1 equipment.
If a wrist strap is not available, hold one of the bare metal strips in a module to discharge static. Figure 1 shows the recommended connection points for the wrist strap and the bare metal strips you should touch.

Handle cards as follows:

- Handle cards by the edges only. Do not touch the contacts or components.
- Set cards in a protective antistatic bag. If an antistatic bag is not available, hand-hold the cards, or set them in card cages unseated from the connectors.
- Unpack or handle cards away from electric motors, transformers, or similar machinery.
- Store cards in protective packing. Do not stack cards on top of each other unless they are packaged.
- Store cards in a dry, dust-free area.

Figure 1

Static discharge points
During repair and maintenance procedures, do the following:

- Insert cards into compatible slots only.
- Turn off the circuit breaker or switch for a module power supply before the power supply is removed or inserted.

WARNING

In AC-powered systems, capacitors in the power supply must discharge. Wait five full minutes between turning off the circuit breaker and removing the power supply from the module.

- Software disable cards, if applicable, before they are removed or inserted.
- Hardware disable cards, whenever there is an enable/disable switch, before they are removed or inserted.
- Return defective or heavily contaminated cards to a repair center; do not try to repair or clean them.

Data disks

Make sure disks are labeled with the software generic and issue number if you remove them from the system.

Follow the precautions below to avoid damaging disks:

- Handle only the hard surface of the disk; never touch the recording surface.
- Keep disks away from strong magnetic fields.
- Avoid exposing disks to extreme heat, rapid changes in temperature, or high humidity.
- Store disks in a suitable container.
Before installing a new disk do the following:

- Check the disk identification to make sure it is the correct disk. Look for any damage to the disk.

CAUTION

The disk drive can be damaged if an upside-down disk is forced into the slot. If there is significant resistance when you try to insert a disk, remove the disk and check the position.

For more detailed information on data disks, see *X11 System Management* (553-3001-300).

Note: No maintenance or cleaning is required on the disk drives.
Communicating with the system

Contents

The following are the topics in this section:

Reference list ... 15
System terminal ... 16
 Message format .. 16
 Local and remote access 18
 Options 51C, 61C, 81, and 81C terminal and modem guidelines . 18
Maintenance telephone 22

Reference list

The following are the references in this section:

• System Management Applications (553-3001-301)
• System Messages (553-3001-411)
• Administration (553-3001-311)
• System Installation Procedures (553-3001-210)
• Fault Clearing (553-3001-510)
• Hardware Replacement (553-3001-520)

You can exchange information with the system through system terminals and maintenance telephones. This chapter discusses these tools for communicating with the system.
Note: Before Release 19, only one device at a time can communicate with the system. Accessing a device while another is logged in will log out the device that was already connected. The Multi User Login feature, available with Release 19 and later, allows more than one device to interact with the Meridian 1. Refer to System Management Applications (553-3001-301) for details on using this feature.

System terminal

You can send maintenance commands and receive system messages (status and error messages) by accessing the Central Processing Unit (CPU) through an RS-232 device, such as a video display terminal (VDT) or teletypewriter (TTY).

For most system options, only the code is displayed or printed when the CPU sends system messages. For the interpretation of the code and any required action, refer to System Messages (553-3001-411). Options 51C, 61C, 81, and 81C provide the code, a plain text explanation, and required actions.

Release 18 and later provide enhanced I/O buffering (independent throughout). With this capability, devices with higher baud rates run faster than devices that are limited to slower speeds.

Message format

Through the system terminal, you can enter commands that tell the system to perform specific tasks; the system performs the tasks and sends messages back to the system terminal, indicating status or errors. System messages, along with indicators such as maintenance display codes and light emitting diode (LED) indicators, identify faults in the system.
System messages are codes with a mnemonic and number, such as PWR0014. The mnemonic identifies an overlay program or a type of message. The number identifies the specific message. Table 1 gives an example of the format for a system message.

Table 1
System message format

<table>
<thead>
<tr>
<th>System message: PWR0014</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>This message (generated by the system monitor) indicates power and temperature status or failures.</td>
</tr>
<tr>
<td>0014</td>
<td>This message means the system monitor failed a self-test.</td>
</tr>
</tbody>
</table>

With options 51C, 61C, 81, and 81C, system messages generated from the Core Common Equipment Diagnostic (LD 135) and the Core Input/Output Diagnostic (LD 137) include the interpretation and any action required. For example, if a CPU test from LD 135 fails, the message displayed is “CCED200 CPU test failed Check the CP card.”

See *Administration* (553-3001-311) for a description of all maintenance commands, and *System Messages* (553-3001-411) for the interpretation of all system messages.
Local and remote access

A terminal or a modem must remain permanently connected to an SDI port in a network slot to provide a constant I/O interface to the system. Although only one device can communicate with the system at a time, many devices can be installed at local and remote locations.

When a system terminal is installed locally, it is connected directly to a serial data interface (SDI) card, located within a module. When a system terminal is installed at a remote location, modems (or data sets) and a telephone line are required between the terminal and the SDI card.

CAUTION

If a Hayes command-set compatible (smart) modem is used at the Meridian 1 end, you must select the dumb mode of operation, Command Recognition OFF and Command Echo OFF, before connecting the modem to the SDI port. Refer to the modem instructions to set the mode of operation.

If a printer is connected to an SDI port (locally or remotely), you must disable XON/XOFF flow control so that no characters or signals are sent to the port, to avoid a “ping-pong” effect.

Figure 2 shows typical system terminal configurations. See “Access through the system terminal” in Fault Clearing (553-3001-510) or Hardware Replacement (553-3001-520) for the access procedure.

For information specific to Options 51C, 61C, 81, and 81C, see “Options 51C, 61C, 81, and 81C terminal and modem guidelines” on page 18.

Options 51C, 61C, 81, and 81C terminal and modem guidelines

Each Call Processor Card provides a data terminal equipment (DTE) port at J21 and a data communication equipment (DCE) port at J25 on the Core and Core/Network Module I/O panel. The designations DTE and DCE refer to the function of the port, not the type of device that connects to the port. Therefore, a modem (which is DCE) connects to the DTE port at J21, and a terminal (which is DTE) connects to the DCE port at J25.
The input/output ports on the CP card (CPSI ports) are used for access to the Core or Core/Network Module, which houses the card. The CPSI ports are active only when the Core associated with the CP card is active. Therefore, the CPSI ports should not be used as the only I/O connection for the system.

Note: For correct operation, terminals used with Options 51C, 61C, 81, and 81C must be set to 9600 baud, 7 data, space parity, one stop bit, full duplex, XON.
Figure 3 shows the recommended configuration for remote maintenance monitoring on option 81, which also applies to option 51C, 61C, and 81C. In this configuration, a switch box is normally set to the SDI port to remotely monitor general system operation. The CPSI ports can be accessed for debugging and patch downloading (through your Nortel Networks representative).

Figure 3
Modem to a switch box and SDI and CPSI ports

Note: The A0377992 switch box and A0381391 modem can be used in this configuration.
See “Options 51C, 61C, 81, and 81C terminal and modem connections” in *System Installation Procedures* (553-3001-210) for detailed information on configuring and connecting terminals and modems with Options 51C, 61C, 81, and 81C.

Note: The A0377992 Black Box ABCDE-Switch, A0381391 UDS FastTalk modem, and cables required for the configuration are available through Nortel Networks.

Modems must meet the following required specifications to be compatible with Options 51C, 61C, 81, and 81C. Modems that meet the following recommended specifications must also meet the required specifications.

- **Required:** true, not buffered, 9600 baud support (required for remote Nortel Networks technical support)
- **Required:** CCITT V.32 or V.32bis compliance
- **Recommended:** the ability to adjust to lower and higher speeds, depending on line quality, while maintaining 9600 baud at local DTE
- **Recommended:** V.42 error correction
- **Recommended:** V.42bis data compression

The following models have been tested and verified as compatible with Options 51C, 61C, 81, and 81C:

- Hayes V-series ULTRA Smartmodem 9600
- Motorola 28.8 Data/Fax modem
- UDS FastTalk V.32/42b (available through Nortel Networks)
- US Robotics Courier HST Dual Standard V.32bis

A dispatch or call back modem, normally connected to the SDI port, can be used if it meets the requirements listed above. If you want to use a modem of this type that does not meet the requirements, the modem can only be used in addition to a modem that does meet specifications.
Maintenance telephone

A telephone functions as a maintenance telephone when you define the class of service as maintenance set allowed (MTA) in the Multi-line Telephone Administration program (LD 11). A maintenance telephone allows you to send commands to the system through the following maintenance overlays: LD 30, LD 32, LD 33, LD 34, LD 35, LD 36, LD 37, LD 38, LD 41, LD 42, LD 43, LD 45, LD 46, LD 60, LD 61, and LD 62.

Note: The Core Common Equipment Diagnostic (LD 135) and Core I/O Diagnostic (LD 137) are among the overlays that cannot be accessed through a maintenance telephone.

You can test tones and outpulsing through the maintenance telephone. Specific commands for tone testing are given in the Tone and Digit Switch and Digitone Receiver Diagnostic (LD 34).

To enter commands on a maintenance telephone, you press the keys that correspond to the letters and numbers of the command (for example, to enter LD 42 return, key in 53#42##). Table 2 shows the translation from a terminal keyboard to a telephone dial pad.
See “Access through the maintenance telephone” in Fault Clearing (553-3001-510) or Hardware Replacement (553-3001-520) for the access procedure.

Table 2
Translation from keyboard to dial pad

<table>
<thead>
<tr>
<th>Keyboard</th>
<th>Dial pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Space or #</td>
<td>#</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Note: There is no equivalent for Q or Z on a dial pad.
Routine maintenance

Contents

The following are the topics in this section:

Reference list ... 25
Pedestal air filter .. 25
DC-power battery systems 26

Reference list

The following are the references in this section:

• Hardware Replacement (553-3001-520)

You must service batteries and air filters regularly. Follow the guidelines in this chapter to maintain batteries and air filters.

Pedestal air filter

There is an air filter in the pedestal of each column. Service the air filters once a month. For instructions on replacing the air filter, see Hardware Replacement (553-3001-520).

If an air filter is damaged in any way, discard it and install a new one. If a dirty air filter is not damaged, you can clean it with warm water and mild detergent. (Do not use compressed air because it may damage the filter.) When the filter is completely dry, you can reinsert it in the pedestal or store it as a spare.

Replace the battery pack every three years, even if no battery failures have occurred. For instructions on replacing the battery pack assembly, see Hardware Replacement (553-3001-520).
DC-power battery systems

External batteries, often used with DC-powered systems, generally require regular visual inspections. They may also require charger or rectifier tests and pilot cell tests. Perform all inspections and tests according to the supplier’s instructions.

To comply with safety requirements, consult the following articles before working with any battery systems:

- Read the “Material Safety Data Sheet” that must be posted to meet Occupational Safety and Health Administration (OSHA) requirements. This article outlines appropriate reserve battery handling procedures.
- Refer to National Electric Code 645-10. This article outlines requirements that call for the installation of AC- and DC-power kill switches to battery systems in certain environments.
Hardware maintenance tools

Contents

The following are the topics in this section:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference list</td>
<td>28</td>
</tr>
<tr>
<td>Circuit card features</td>
<td>28</td>
</tr>
<tr>
<td>Card test</td>
<td>28</td>
</tr>
<tr>
<td>Enable/disable switch</td>
<td>29</td>
</tr>
<tr>
<td>LED</td>
<td>29</td>
</tr>
<tr>
<td>Maintenance display code</td>
<td>31</td>
</tr>
<tr>
<td>CPU controls</td>
<td>35</td>
</tr>
<tr>
<td>Initialize button</td>
<td>35</td>
</tr>
<tr>
<td>Normal/maintenance switch</td>
<td>35</td>
</tr>
<tr>
<td>Reload button</td>
<td>37</td>
</tr>
<tr>
<td>System alarms</td>
<td>39</td>
</tr>
<tr>
<td>Major alarms</td>
<td>39</td>
</tr>
<tr>
<td>Minor alarms</td>
<td>40</td>
</tr>
<tr>
<td>Remote alarms</td>
<td>40</td>
</tr>
<tr>
<td>System monitor indicators</td>
<td>41</td>
</tr>
<tr>
<td>NT8D22 System Monitor</td>
<td>41</td>
</tr>
<tr>
<td>Line transfer</td>
<td>43</td>
</tr>
<tr>
<td>Main power loss</td>
<td>45</td>
</tr>
<tr>
<td>Module power supply failure</td>
<td>45</td>
</tr>
<tr>
<td>Temperature alarms</td>
<td>46</td>
</tr>
</tbody>
</table>
Reference list

The following are the references in this section:

- *X11 Administration* (553-3001-311)
- *X11 System Messages* (553-3001-411)

There are fault indicators and hardware features that help you perform maintenance tasks (particularly identifying and clearing faults). These maintenance tools include the following:

- circuit card features that include card level tests and status indicators
- CPU controls that allow you to control common equipment functions
- system alarms that categorize the severity of a system failure
- system monitor indicators that identify power and temperature faults

Circuit card features

Card test

A card test checks to see that a card is working correctly. Many cards perform a self-test on power-up. You can also force card-level tests through software commands.

When intelligent peripheral cards or network cardshare installed, the red LED on the faceplate remains lit for two to five seconds while a self-test runs. (The time required for the self-test depends on the type of card.) If the test is successful, the LED flashes three times and remains lit until the card’s software is configured and enabled, and then the LED goes out. If the LED does not follow the pattern described or operates in any other manner (such as continually flashing or remaining weakly lit), the card should be replaced.

In Options 51C, 61C, 81, and 81C, when Core common control cards are installed, a self-test runs. If the self-test is successful, the LED flashes three times, then goes out
Enable/disable switch

Some cards have a switch on the faceplate that enables or disables the hardware for that card.

When you remove a card, whenever possible disable the software; then, disable the hardware by setting the switch to Dis.

Hardware disable a card (set the switch to Dis) before you install it. After the card is locked into position, set the switch to Enb; then enable the card in software. Software disable and enable cards as described in the X11 Administration (553-3001-311).

Figure 4 on page 30 shows the typical location of an Enable/Disable (ENB/DIS) switch.

LED

Many cards have one or more light emitting diodes (LEDs) on the faceplate. The LED gives a visual indication of the status of the card or of a unit on a card.

When a green LED is steadily lit, it indicates the card is operating normally. When a green LED is off, it indicates the card is disabled or faulty.

When a red LED is steadily lit, it indicates the card, or a unit on it, is disabled or faulty or unequipped. When a red LED is off and power is available to the card, it indicates the card is operating normally.

Note 1: The shape of the LED (some are round and some are rectangular) does not indicate a different function.

Note 2: In Options 61C, 81, and 81C, the red LEDs on the NT6D65 Core to Network Interface (CNI) Cards are lit when the associated Core is inactive. This is normal operation.
Figure 4
Sample enable/disable switch
Table 3 gives two examples of LED indications.

Table 3

<table>
<thead>
<tr>
<th>Type of card</th>
<th>LED color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common equipment</td>
<td>green</td>
<td>LED lit = operation normal</td>
</tr>
<tr>
<td>power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital line card</td>
<td>red</td>
<td>LED lit = disabled or not equipped</td>
</tr>
</tbody>
</table>

Figure 5 on page 32 shows the location of the LED on the faceplate of an Intelligent Peripheral line card.

Maintenance display code

Maintenance displays are located on the faceplate of some circuit cards. A hexadecimal code is displayed. Interpretations of the maintenance display codes are listed under “HEX” in the X11 System Messages (553-3001-411). You should examine previous codes, system messages, and visual indicators with any current maintenance display codes to properly analyze faults.

In Options 51C, 61C, 81, and 81C, the maintenance display on the Call Processor Card (NT6D66, NT9D19, NT5D10 or NT5D03) shows two lines of information with up to 16 characters per line. The hexadecimal code and its definition are shown on the display.

Each new code shown on a maintenance display overwrites the one before it. However, note the following:

- All codes received on common equipment displays are recorded. You can review them by printing the History File.
- The most recent 16 codes displayed on a controller card stay in memory. You can review them and reset the counter through the Network and Signaling Diagnostic (LD 30).
- In Options 51C, 61C, 81, and 81C, the most recent 64 displays on a CP card stay in memory. You can review the displays on the active CP card through the Core Common Equipment Diagnostic (LD 135).
Figure 5
Sample LED indicator
Table 4 lists the cards with maintenance displays and the type of information the codes indicate on each card. Figure 6 on page 34 shows the location of the maintenance display on the faceplate of a floppy disk interface card.

Table 4
Circuit cards with maintenance displays

<table>
<thead>
<tr>
<th>System options</th>
<th>Circuit card</th>
<th>Display indication (for all related cards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51C, 61C, 81, 81C</td>
<td>NT6D66, NT9D19, NT5D10, NT5D03 Call Processor Card</td>
<td></td>
</tr>
<tr>
<td>51C, 61C, 81, 81C</td>
<td>NT5D61 IODU/C Card (release 23 and later) NT5D20 IOP/CMDU Card release 21 and later</td>
<td></td>
</tr>
<tr>
<td>51C, 61C, 81, 81C</td>
<td>NT8D01 Controller Card NT1P62 Fibre Controller</td>
<td>During normal operation, display shows self-test codes and port number on which Controller Clock is tracking</td>
</tr>
<tr>
<td>51C, 61C, 71, 81, 81C</td>
<td>NT7R52 Remote Carrier Interface Card</td>
<td>During normal operation, display shows self-test codes and port number on which Controller Clock is tracking</td>
</tr>
</tbody>
</table>
Figure 6
Sample maintenance display

Two-digit maintenance display
CPU controls

Switches and buttons on common equipment cards allow you to control CPU activity and clear common equipment faults.

Initialize button

Pressing the manual initialize (Man Int) button associated with the active CPU starts the Initialize Program. The Initialize Program clears common equipment faults and then rebuilds call-dependent data and generates system messages indicating the status of the system. This process is called an initialization. Call processing is briefly interrupted during an initialization.

Manual initialize buttons are located on the following cards:

- In Options 51C, 61C, 81, and 81C, the initialize button is on the NT6D66, NT9D19, NT5D10, or NT5D03 Call Processor Card.

Normal/maintenance switch

There is a normal/maintenance (Norm/Maint) switch on the Call Processor Card. Figure 7 shows the location of the switch on the Call Processor Card. In dual CPU systems (Options 61C, 81, and 81C), you use this switch as follows to keep the dual CPUs from switching, or trying to switch, when you are testing or replacing common equipment hardware on the inactive CPU:

- On the CPU you are not testing or replacing, set the switch to Maint. This CPU will be active.
- On the CPU you are testing or replacing, set the switch to Norm. This CPU will remain inactive as long as the other CPU is set to Maint.

For regular operation in dual CPU systems, set both normal/maintenance switches to Norm. For an Option 51C (a single CPU system), set the switch to Maint.
Figure 7
Norm/Maint switch on the Call Processor Card

Manual initialize button

Normal/maintenance switch
Reload button

Reload (Rld or Man Rst) buttons allow you to manually activate the System Loader program. The System Loader initiates call processing and starts memory-checking diagnostics. This process is called a **sysload** or **system reload**. Here are the locations of the reload button for the various options:

In Options 51C, 61C, 81, and 81C, the reload button (Man Rst) is on the Call Processor Card. To start a sysload, you must simultaneously press the reload buttons on both CP cards.

Figure 8 shows the location of the reload button on a QPC581 CMA Card.

CAUTION

During a sysload active calls are disconnected and the system goes into an emergency line transfer state. Use the reload button only if you are specifically instructed to do so in Nortel Networks Publications.
Figure 8
Reload button on the changeover and memory arbitrator card
System alarms

System alarms are based on various fault monitors and indicators. The category of the alarm—major, minor, or remote—indicates the severity of the system failure:

- A major alarm requires immediate action by the technician.
- A minor alarm requires attention, but not necessarily immediate attention, by the technician.
- A remote alarm may require attention by the technician.

Major alarms

A major alarm indicates a fault that seriously interferes with call processing. The following faults cause a major alarm:

- CPU or control bus failure
- disk system failure when attempting to load the system
- system power failure (without reserve power)
- temperature fault (excessive heat)

When there is a major alarm, the red LED at the top of the affected column lights. A major alarm also activates a display on all attendant consoles.

When a Meridian 1 is equipped with a power failure transfer unit, a major alarm causes designated 500/2500 telephones to connect directly to Central Office trunks; this is called a line transfer.
Minor alarms

A minor alarm indicates the system hardware or software has detected a fault requiring attention. The following faults cause a minor alarm: Automatic identification of outward dial (AIOD) trunk failure

- conference failure
- digitone receiver failure
- memory failure
- more than one fault on different line and trunk cards in one shelf (indicated on affected customer’s console only)
- network failure (indicated on affected customer’s console only)
- peripheral signaling failure
- serial data interface failure
- tone and digit switch failure

A minor alarm displays an alarm on attendant consoles in customer groups affected by the fault. (A minor alarm indication on the console is an optional feature, enabled and disabled on a customer basis through data administration procedures.)

Remote alarms

A remote alarm is an optional extension of a major alarm to another location, such as a monitoring or test center, or to an indicator, such as a light or bell. When a major alarm occurs, the Meridian 1 provides relay contact closure across two remote alarm lines, REMALMA and REMALMB. These lines are extended to the main distribution frame (MDF) through the system monitor to MDF cable for customer use. The relay contacts are rated at 30 V dc and 2 amps. The REMALMB line is the return or ground for the REMALMA line. Nortel Networks does not extend remote alarm lines beyond the MDF.
System monitor indicators

The system monitor checks the column temperature, cooling system status, and system voltage status and controls line transfer states accordingly.

NT8D22 System Monitor

System Options 51, 61C, 81, and 81C are equipped with the NT8D22 System Monitor, which is installed in the rear of the pedestal in each column. Table 5 lists faults monitored by this system monitor.

*N*ote: In multiple-column systems, there is one master system monitor, located in the column with CPU 0, and multiple slave system monitors. A switch setting on each system monitor defines the master or the address of each slave.

Table 5

<table>
<thead>
<tr>
<th>Faults monitored by the NT8D22 System Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power faults</td>
</tr>
<tr>
<td>CPU condition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Main power loss</td>
</tr>
<tr>
<td>Power supply failure</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Temperature alarm</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The master system monitor checks the CPU column and periodically polls the slaves to check their status. When polled, the slaves report their status to the master. If a slave does not respond when it is polled, the master reports the address as a faulty slave.
If a slave is removed, the master cannot communicate with higher addresses. Therefore, the master considers the removed slave and all slaves with a higher address as disabled. For example, if slave 2 is disabled, the master also reports slaves 3, 4, and up as disabled.

The system monitor reports power equipment status and faults to the CPU. (Only the master system monitor communicates with the CPU.) System messages generated by the system monitor are identified by the mnemonic PWR. Figure 9 shows the flow of messages from NT8D22 System Monitors to the system terminal.

If there is a fault, the system monitor lights the LED on the affected column.

Figure 9
NT8D22 System Monitor message flow
Line transfer

As an option, you can connect one or more power failure transfer units (PFTUs) to the Meridian 1. Each PFTU connects up to eight designated analog (500/2500 type) telephones to Central Office trunks. If call processing stops, those analog (500/2500 type) telephones are transferred through the PFTU to the Central Office so that you still have outside connections. A line transfer occurs during the following situations:

- during a sysload (system reload)
- if there is a major power failure in a DC-powered system (as detected by the TRIP signal)
- if call processing stops because of a CPU failure
- if there is a loss of power to the column
- if there is a loss of power to the PFTU
- if the temperature in a column is too high
- if a line transfer button on the attendant console is pressed (this applies on a customer basis)
- if a line transfer switch on the PFTU is turned on

Note: If position 4 on switch 1 (SW1) is set to OFF on a system monitor, that system monitor’s column will not activate a line transfer if the temperature is too high.

Figure 10 on page 44 shows four ways multiple-column systems and PFTUs can be configured. You can configure in the following ways:

- connect all the columns in a system to a single PFTU
- connect each column to an individual PFTU
- combine connecting individual columns to individual PFTUs and multiple columns to a single PFTU
- attach additional PFTUs to a PFTU that is connected to one or multiple columns
Figure 10
PFTU configurations

- All columns to one PFTU
- One column to one PFTU
- One column to one PFTU and multiple columns to one PFTU
- PFTU with additional PFTUs attached
Main power loss
The system monitor receives status and control signals from the external power system. The system monitor then generates system messages that indicate the status of main and reserve power supplies.

You can connect a reserve (back-up) power supply to the Meridian 1: either an uninterruptible power supply (UPS) for AC-powered systems or reserve batteries for DC-powered systems. If the main source of external power is lost, power to the system is maintained by the UPS or reserve batteries.

If the main power supply is lost, the system monitor generates a major alarm. The NT8D22 System Monitor also generates system messages to indicate the system is running on reserve power.

Module power supply failure
There are four types of module power supplies:

• common equipment (CE) power supply
• common/peripheral equipment (CE/PE) power supply
• peripheral equipment (PE) power supply
• ringing generator

The NT8D22 System Monitor handles complete or partial failures in a module power supply as follows:

• If the output voltage is higher than the threshold for +5 volts, the affected power supply shuts down, the column LED lights, and a system message is sent.
• If the output voltage is higher than the threshold for other than +5 volts, power for only that voltage shuts down in the affected power supply, the column LED lights, and a system message is sent.
• If the output voltage is lower than the threshold for any voltage, power for only that voltage shuts down in the affected power supply, the column LED lights, and a system message is sent.
• If the input voltage is lower than the threshold, the affected power supply shuts down and then recovers when the input level recovers.
To help you pinpoint a power supply problem, the master NT8D22 System Monitor identifies the following:

- the column with the fault (system monitor 0–63)
- the module (0–3) in that column
- the power supply unit (1–2) in the module

Figure 11 shows the power equipment designations in a column.

Temperature alarms

Each column in Options 51C, 61C, 81, and 81C is cooled by a blower unit (NT8D52AB with AC power or NT8D52DD with DC power) in the pedestal. All of these systems are equipped with the NT8D22 System Monitor, which performs the following functions:

- If there is a partial or complete failure in a blower unit, the system monitor lights the column LED and generates a system message.
- If the thermostats in a column report a temperature exceeding 70 degrees C (158 degrees F), the system monitor lights the column LED, generates a system message, then, providing this condition exists for 30 seconds, shuts down power to the column in 30 seconds.

The NT8D22 System Monitor generates a system message if the air leaving the column exceeds 55 degrees C (131 degrees F). This thermal alarm may indicate a loss of air-conditioning in the room, loss of ventilation in the column, a problem with the blower unit, or a blocked air filter.
Figure 11
Power equipment designations from the master NT8D22 System Monitor

Module 3
Power unit 1

Module 2
Power unit 1
Power unit 2

Module 1
Power unit 1

Module 0
Power unit 1

Column 0
System monitor 0

Front of the column, covers removed
Software maintenance tools

Contents

The following are the topics in this section:

Reference list ... 49
Diagnostic programs 50
 Error Monitor .. 50
 Initialize Program 50
 Midnight and Background Routines 51
 Overlay Loader .. 53
 Overload Monitor 53
 Resident Trunk Diagnostic 53
 System Loader ... 53
Options 51C, 61C, 81, and 81C features 54
The History File feature 56
Interactive diagnostics 57
 The Enhanced Maintenance feature 57
 Manual continuity tests 58

Reference list

The following are the references in this section:

• *X11 Administration* (553-3001-311)
• *X11 System Messages* (553-3001-411)
• *X11 Features and Services* (553-3001-306)
Diagnostic programs

Diagnostic software programs monitor system operations, detect faults, and clear faults. Some programs run continuously; some are scheduled.

Diagnostic programs are resident or non-resident. Resident programs, such as the Error Monitor and Resident Trunk Diagnostic, are always present in system memory. Non-resident programs, such as the Input/Output Diagnostic and Common Equipment Diagnostic, are used as Midnight and Background Routines or for interactive diagnostics. Non-resident programs are loaded from the system disk and are run as scheduled or upon request.

Non-resident programs are called overlay programs or loads. They are identified by a title and a number preceded by the mnemonic for load (for example, Trunk Diagnostic—LD 36).

See X11 Administration (553-3001-311) for detailed information on all diagnostic programs.

Error Monitor

The Error Monitor is a resident program that continuously tracks call processing. The Error Monitor generates system messages if it detects invalid or incorrectly formatted call-processing information.

System messages generated by the Error Monitor are preceded by the mnemonic ERR, which usually indicates hardware faults, or the mnemonic BUG, which usually indicates software problems. With prompt ERRM in the Configuration Record (LD 17), you can instruct the system to print or not print ERR or BUG messages.

Refer to X11 System Messages (553-3001-411) for help in interpreting system messages, including ERR and BUG.

Initialize Program

The Initialize Program momentarily interrupts call processing as it clears common equipment faults. It then rebuilds call-dependent data and generates system messages, with the mnemonic INI, that indicate the status of the system. This process is called an initialization.
Through an initialization, you can download firmware from the CPU to superloop network cards and controller cards. Call processing is interrupted for an additional amount of time during this process.

You can activate an initialization by pressing the manual initialize (Man Int) button on the following:

- NT6D66, NT9D19, NT5D10, or NT5D03 Call Processor Card in Options 51C, 61C, 81, and 81C

An initialization always occurs automatically after the System Loader program runs. An initialization often occurs when a software or firmware fault is detected and when a common equipment hardware fault is detected.

Midnight and Background Routines

In the Configuration Record (LD 17), you can select the overlay programs that will run in the *Midnight Routine* and *Background Routine*. These routines automatically perform maintenance checks. Programs included in the Midnight Routine are defined with the prompt DROL (derived from “daily routine overlay”). Programs included in the Background Routine are defined with the prompt BKGD.

The Midnight Routine runs once every 24 hours. This routine is preset to run at midnight when a system is shipped, but you may assign a different time in the Configuration Record. When it is time for the Midnight Routine to start, the system cancels any other program.

The Background Routine runs when no other program is loaded in the overlay area. The programs included in the Background Routine run in sequence repeatedly until the Midnight Routine runs or there is another request to use the overlay area (for example, if you log on to check the status of a circuit card).

You may include the programs listed in Table 6 in Midnight and Background Routines. Your maintenance requirements and the configuration of your system determine the programs you include in Midnight and Background Routines.
Note: Software Audit (LD 44) should always be used in the Background Routine.

Table 6
Programs used in Midnight and Background Routines

<table>
<thead>
<tr>
<th>Program number</th>
<th>Program function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD 30</td>
<td>Network and Signaling Diagnostic</td>
</tr>
<tr>
<td>LD 32 (Midnight only)</td>
<td>Network and Peripheral Equipment Replacement</td>
</tr>
<tr>
<td>LD 33</td>
<td>1.5 Mbyte Remote Peripheral Equipment Diagnostic</td>
</tr>
<tr>
<td>LD 34</td>
<td>Tone and Digit Switch and Digitone Receiver</td>
</tr>
<tr>
<td>LD 35 (see Note 1)</td>
<td>Common Equipment Diagnostic</td>
</tr>
<tr>
<td>LD 36</td>
<td>Trunk Diagnostic 1</td>
</tr>
<tr>
<td>LD 37 (see Note 1)</td>
<td>Input/Output Diagnostic</td>
</tr>
<tr>
<td>LD 38</td>
<td>Conference Circuit Diagnostic</td>
</tr>
<tr>
<td>LD 40</td>
<td>Call Detail Recording Diagnostic</td>
</tr>
<tr>
<td>LD 41</td>
<td>Trunk Diagnostic 2</td>
</tr>
<tr>
<td>LD 43 (Midnight only)</td>
<td>Data Dump (see Note 2)</td>
</tr>
<tr>
<td>LD 44</td>
<td>Software Audit</td>
</tr>
<tr>
<td>LD 45</td>
<td>Background Signal and Switching Diagnostic</td>
</tr>
<tr>
<td>LD 46</td>
<td>Multifrequency Sender Diagnostic for ANI</td>
</tr>
<tr>
<td>LD 60 (Midnight only)</td>
<td>Digital Trunk Interface Diagnostic</td>
</tr>
<tr>
<td>LD 61 (Midnight only)</td>
<td>Message Waiting Lamps Reset</td>
</tr>
</tbody>
</table>

Note 1: For Option 51C, 61C, 81, and Option 81C, use LD 135 instead of LD 35. Use LD 137 and LD 37.

Note 2: LD 43 will automatically be activated during midnight routines if changes have been made within the past 24 hours.
Overlay Loader

This resident program locates, loads, and checks all overlay programs. It automatically activates the Midnight and Background Routines. You can load programs manually by entering commands through the system terminal or maintenance telephone. Once the program is loaded, you see the program mnemonic (such as TRK for Trunk Diagnostic) on the system terminal.

You can also use the Overlay Loader to enable, disable, and display the status of the disk drive unit.

Overload Monitor

The system continuously monitors the volume of system messages. If it detects too many error messages from a line or trunk card, the system activates the Overload Monitor program. The Overload Monitor disables the faulty card and generates system messages with the mnemonic OVD.

Refer to X11 System Messages (553-3001-411) for help in interpreting system messages.

Resident Trunk Diagnostic

This program automatically monitors all trunk calls and records apparent faults on each trunk. If the number of faults on a trunk exceeds the threshold for that trunk, the program generates a system message identifying the trunk and the type of fault.

A failure on a trunk may keep the trunk from detecting incoming calls. The threshold mechanism cannot detect such a failure, so this program also records how many days it has been since each trunk received an incoming call. If you suspect some incoming calls are not being processed, you can use the command LMAX in Trunk Diagnostic 1 (LD 36) to identify the trunk with the maximum idle days.

System Loader

The System Loader program loads all call-processing programs and data and starts memory-checking diagnostics. After all required programs and data have been loaded and all checks performed, the System Loader is erased from system memory, the Initialize Program runs, and normal call processing begins. This process is called a sysload or system reload.
The System Loader operates automatically on system power up or if a common equipment or power fault destroys information in the system memory. For maintenance purposes, you generally activate this program only if call processing has stopped.

You can start a sysload manually by pressing the reload (Rld) button on the following:

- NT6D66, NT9D19, NT5D10, or NT5D03 Call Processor Card in Options 51C, 61C, 81, and 81C (simultaneously press both buttons)

CAUTION
During a sysload active calls are not disconnected and the system goes into an emergency line transfer state. Activate the System Loader only if you are specifically instructed to do so in Nortel Networks Publications.

To minimize sysload time, you can enable the Short Memory Test capability in LD 17 (prompt SMEM). If you enable the test, only one pass of memory testing is performed on a normal reload. If any subsequent system failure causes an automatic reload, the full six-pass Memory Test is performed on all system memory.

Note: A sysload completes so quickly on Options 51C, 61C, 81, and option 81C that the Short Memory Test is not useful. Therefore, the package was not designed to be compatible with options 51C, 61C, 81, and 81C.

Options 51C, 61C, 81, and 81C features

When Options 51C, 61C, 81, and 81C receive a system reload signal, the sysload occurs in two to five minutes, depending on the size of the customer database. During the sysload, Options 51C, 61C, 81, and Option 81C perform a core shelf test, which includes self-tests on the CP and the IOP part of the IOP/CMDU. The results of the self-tests are displayed on the liquid crystal display (LCD) on the CP card, the hex display on the IODU/C card, and the system terminal. On the other core cards, the LED blinks three times after a successful test.
Options 51C, 61C, 81, and 81C typically perform an initialization in under 90 seconds. You can manually initialize only the active core side.

In Options 51C, 61C, 81, and 81C, the overlays reside in dynamic random access memory (DRAM) after they are loaded from the hard disk during an initial software load (software is shipped on redundant hard disks). Since they are always in resident memory, the overlays can be loaded quickly.

Options 51C, 61C, 81, and 81C can diagnose faults in field replaceable units for all core hardware, including cables. In case of a failure, a message in a natural language (such as English) appears on the system terminal and on the liquid crystal display (LCD) on the CP card.

If there is a hardware fault, the system attempts a recovery. In the case of a redundant hardware failure, under certain conditions options 51C, 61C, and option 81 will attempt a graceful switchover to the core side without the failure.

Options 51C, 61C, 81, and 81C remote operation capabilities include remote access to both Core Modules or Core/Network Modules; the ability to sysload, initialize, or put the system in a split mode; and the ability to upload and download the customer database. You can access the core complex in each Core Module or Core/Network Module through the I/O ports on the CP cards.
The History File feature

If you have a printer connected to the system, each system message is printed as it is received. If you do not have a printer connected, you can use the History File to store a limited number of system messages in protected memory. The contents of the file may then be printed on demand using Print Routine 3 (LD 22).

The messages stored are specified on a system basis and can be one or more of the following types:

- customer service changes (CSC)
- maintenance messages (MTC)
- service changes (SCH)
- software errors (BUG)
- initialization and.sysload messages (INI and SYS)

For information on selecting the messages to be stored, see *XII Features and Services* (553-3001-306). For help with interpreting system messages, refer to *XII System Messages* (553-3001-411).

The contents of the History File are erased during a.sysload or if you change the History File’s length. However, because the History File is located in protected data store, the contents survive an initialization.

The length of the History File is set in the configuration record (LD 17) at the size prompt under the ADAN gate opener. The maximum length of the file depends on the amount of protected data store available, which in turn depends on the number of system features that require protected data store.

If the History File is full, the first messages stored are replaced by incoming messages. If this happens, the system gives a “file overflow” message at the start of a printout so you know some information has been replaced by newer messages.
Interactive diagnostics

You can load overlay programs, including programs called *maintenance routines*, into memory through the system terminal or maintenance telephone. This function is performed by the Overload Loader program.

Note: The programs used in Midnight and Background Routines are also used manually as interactive diagnostic programs (see Table 6).

Maintenance routines are used interactively with a command/response format. In this format, you enter a command that tells the system to perform a specific task. The system performs the task and sends system messages indicating the status or errors back to you.

With interactive diagnostics you can do the following:

- disable, test, and enable specific equipment
- verify that a reported fault still needs to be cleared
- verify that a repair procedure has cleared a fault

All maintenance programs and commands are described in detail in *X11 Administration* (553-3001-311). For help with interpreting system messages, refer to *X11 System Messages* (553-3001-411).

The Enhanced Maintenance feature

System software sometimes requires modifications, called *patches*, provided by Nortel Networks Technical Assistance Centers. The command ISS in Print Routine 3 (LD 22) prints the software generic and issue. A plus sign (+) by the issue number means a patch is in service.

The Enhanced Maintenance feature does the following:

- allows patches to automatically survive a sysload
- permits patches on non-resident programs
- records all patches in the system
- allows data disks to be shipped with pre-loaded patches

If there is a problem with a patch, the CPU sends system messages with the mnemonic EHM to the system terminal or the History File.
Manual continuity tests

You can perform manual continuity tests on superloop network cards, intelligent peripheral equipment, and Basic Rate Interface (BRI) equipment. A continuity test generates a signaling pattern at one point, monitors its progress, and checks for its detection at an end point. For example, when a superloop network card sends a signal to a controller card, the continuity test verifies the following:

- the superloop network card sent the signal
- the loop carried the signal to the controller card
- the controller card received the signal

In a point-to-point continuity test, a superloop network card or a controller card can generate or detect the test pattern. In loopback tests, one card, a superloop network card, a controller card, or a multi-purpose ISDN signaling processor (MISP) card, is both the generator and the detector. Only idle timeslots are tested in any of the continuity tests.

There are two types of loopback tests for BRI equipment. In one type of test, the pattern generated by the MISP card loops back through the digital subscriber loop (DSL) interface. In the other type of test, the pattern generated by the MISP card loops back through an S/T-interface line card (SILC) or a U-interface line card (UILC), depending on which is specified. Both types of test are accessed as Test 9, but responses to the series of prompts for Test 9 determine the loopback point.

Fifteen continuity tests can run simultaneously. When a test is completed, it stops, the status is reported, and the other tests continue running. You can check the status of any test at any time. When all the tests end, the number of tests run and any failed tests are reported to the CPU. You can display the results at any time during the procedure.

There are nine continuity test configurations. You can run each test by entering a set of prompts outlined in the Background Signaling and Switching Diagnostic (LD 45). Figure 12 on page 59 shows point-to-point configurations. Figure 13 on page 60 shows loopback configurations.
Figure 12
Manual continuity tests: point-to-point configurations

<table>
<thead>
<tr>
<th>TEST 1</th>
<th>Pattern generator</th>
<th>Pattern detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superloop network card to controller card</td>
<td>Network -> Controller</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST 2</th>
<th>Pattern generator</th>
<th>Pattern detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller card to superloop network card</td>
<td>Controller -> Network</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST 3</th>
<th>Pattern generator</th>
<th>Pattern detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superloop network card to superloop network card</td>
<td>Network A -> Network B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST 4</th>
<th>Pattern generator</th>
<th>Pattern detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller card to controller card</td>
<td>Controller A -> Network A -> Network B -> Controller B</td>
<td></td>
</tr>
</tbody>
</table>

553-3008
Figure 13
Manual continuity tests: loopback configurations

Pattern generator and pattern detector

Loopback point

TEST 5
Superloop network card through backplane

TEST 6
Superloop network card through controller card

TEST 7
Controller card through special channel

TEST 8
Superloop network card through special channel

TEST 9
BRI continuity tests:
- MISP card through DSL interface
- MISP card through SILC or UILC bus interface

* Special loopback channels are used to verify the integrity of the continuity generators and detectors. Run these tests first.

553-3009
User reports

Reports from system users often tell you about problems that the system may not indicate. Many faults reported by users, such as a damaged telephone or data set, are obvious and can be fixed by replacing the damaged equipment.

Some faults are less obvious and may be caused by other equipment, such as a defective peripheral equipment line or trunk card. To classify the fault in these cases, check for system messages and visual fault indications. You may also need to have the user reproduce the problem so you can determine the sequence of events that led to the fault.
Table 7 on page 62 lists problems users typically report.

Table 7
User report indications

<table>
<thead>
<tr>
<th>User report</th>
<th>Type of fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major alarm reported by attendant</td>
<td>Power</td>
</tr>
<tr>
<td>No ring on 500/2500 telephones</td>
<td></td>
</tr>
<tr>
<td>Major alarm reported by attendant</td>
<td>Common equipment</td>
</tr>
<tr>
<td>Minor alarm reported by attendant</td>
<td></td>
</tr>
<tr>
<td>Users cannot transfer or conference</td>
<td>Network equipment</td>
</tr>
<tr>
<td>Users cannot dial out on 500/2500 telephones</td>
<td></td>
</tr>
<tr>
<td>Trouble with calls on attendant console</td>
<td>Peripheral equipment</td>
</tr>
<tr>
<td>Trouble with calls on 500/2500 telephones</td>
<td></td>
</tr>
<tr>
<td>Trouble with calls on SL-1, M1000, or digital telephones</td>
<td></td>
</tr>
<tr>
<td>Users have trouble with a specific trunk</td>
<td>Trunk</td>
</tr>
<tr>
<td>Callers report continuous ringing</td>
<td></td>
</tr>
<tr>
<td>Trouble with calls on console or telephones, or both</td>
<td></td>
</tr>
<tr>
<td>Trouble with calls</td>
<td>Attendant console</td>
</tr>
<tr>
<td>Trouble with equipment (such as handset, headset, or display)</td>
<td></td>
</tr>
<tr>
<td>Trouble with calls</td>
<td>Telephone</td>
</tr>
<tr>
<td>Trouble with equipment (such as handset or add-on module)</td>
<td></td>
</tr>
</tbody>
</table>
Technical assistance service

Customer Technical Support (CTS) mission is to resolve Nortel Networks Product defects. CTS will provide technical assistance for systems experiencing problems, even if it has been determined that the problem is not a product defect. However, CTS will charge the distributor for the support of non-defect related problems as described in this document. CTS requires an open Purchase Order number on file. Otherwise, the purchase number is required at the time of call generation.

Note: Based on warranty billing programs within the North America regions, an invoice may or may not be generated.

The availability of assistance, both product defect and non-product defect, is prioritized based upon specific priority classifications. These classifications are known as Emergency, Service Affecting, and Non-Service Affecting, and are defined as follows:

- diagnosing and resolving software problems not covered by support documentation
- diagnosing and resolving hardware problems not covered by support documentation
- assisting in diagnosing and resolving problems caused by local conditions

Technical assistants receive three types of service requests:

- Emergency requests receive an immediate response; see Table 8 on page 65. Service for emergency requests is continuous until normal system operation is restored.
• Descriptions of Service-Affecting requests are listed in Table 9 on page 64. Equipment for which these requests are intended are operable but are missing critical functionality.

• Non-Service Affecting requests, also shown in Table 9, list customer-manageable problems or problems that could be resolved at the distributor level.

Except as excluded by the provisions of warranty or other agreements with Nortel Networks, a fee for technical assistance may be charged, at rates established by Nortel Networks. Information on rates and conditions for services are available through Nortel Networks representatives.

Collect the information listed in Table 10 on page 65 before you call for service.

Table 9
Service affecting and non-service affecting systems

<table>
<thead>
<tr>
<th>Service Affecting: system is operational, but critical functionality is being impacted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer’s key business elements are functioning, but severe impact to the operation is occurring. This classification reflects the customer’s needs and is set by the COAMS or distributor’s authorized caller at the time the CSR is opened.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non Service Affecting: Problems experienced have no, or isolated affect on majority of users.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer’s key business elements are functioning without impact. Some isolated service impact is noticed by some system end users. This classification also reflects the customer’s needs and is set by the COAMS or distributor’s authorized caller at the time the CSR is opened.</td>
</tr>
<tr>
<td>• CTS will provide assistance for emergency problems 24 hours a day, 7 days a week.</td>
</tr>
<tr>
<td>• CTS will provide assistance for service-affecting and non-service affecting problems only during regular business hours.</td>
</tr>
</tbody>
</table>
Table 10
Checklist for service requests

<table>
<thead>
<tr>
<th>Name of person requesting service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company represented</td>
<td></td>
</tr>
<tr>
<td>Telephone number</td>
<td></td>
</tr>
<tr>
<td>System option number/identification</td>
<td></td>
</tr>
<tr>
<td>System serial number</td>
<td></td>
</tr>
<tr>
<td>Installed software generic and issue (located on data disk)</td>
<td></td>
</tr>
<tr>
<td>Modem telephone number and password (if applicable)</td>
<td></td>
</tr>
<tr>
<td>Request classification (see Tables 8 and 9)</td>
<td></td>
</tr>
<tr>
<td>Description of assistance required</td>
<td></td>
</tr>
</tbody>
</table>

Table 8
Emergency requests to CTS

Emergency - System is down or, essentially, is operable. Restoration of basic functionality to pre-incident condition is a top priority. Support is offered 24 hour, 7 days a week. response is within 30 minutes and resolution continues until emergency condition is cleared. applies to full commissioned, functioning switches and any of the following:

- System ceased call processing
- System degradation such that 10% or 100 or more voice or data lines are not processing calls
- Loss of auxiliary processor (Meridian MAX, Meridian MAIL, Meridian CCR, Meridian LINK, Symposium CCS)
- Stand-by CPU out of service
- Two or more system-initiated sysloads per day
- Two or more system initiated initializations per day
- Tape or disk drive failure
- Potential system degradation or outage
- Loss of critical trunk group
- Slow dial tone (8 seconds or more)
- Customer declares critical functionality - see Raised Priority in this section
For non-product defect problems, such as a customer manageable problem or a problem that could be resolved at the distributor level, CTS may charge for the service provided. Charges for these Services may be found in the Nortel Product Catalog/Price Manual under Technical Support.

CTS will make every attempt to work with the distributor to understand the impact of a service problem to the End Customer’s business. When contacting CTS, distributors are requested to verify the priority classification at the time the customer service report is opened. This will assist CTS in prioritizing calls within the Service Affecting and Non-Service Affecting categories.

Raised priority
Nortel recognizes that non-emergency service requests may be of high impact and be critical to a customer’s business. The authorized caller should identify the critical business impact or time sensitive nature of an incident directly to the engineer at the time the customer service request is opened or anytime thereafter to raise the priority. Specific agreements or expectations pertaining to this incident should be reached at this time. Under these circumstances, the problem may be raised to an Emergency priority and treated as such. For these customer critical situations, the following will apply:

- Emergencies by definition will take precedence.
- Service Affecting and Non-Service Affecting problems will need the appropriate distributor management approval to proceed with the problem resolution.
- Outside of normal business hours a valid purchase order number will be required prior to proceeding with the problem resolution.
- Refer to the Nortel Networks Product Catalog/Price Manual for CTS charges.

When prioritizing Customer Impact priorities, CTS will always give the highest priority to emergency-based businesses such as hospitals, fire departments, police departments, and rescue squads.
Index

Numerics
500/2500 telephones
 major alarms and, 39
 PFTU connection to CO trunks, 43

A
access, local/remote
 described, 18
 to system terminals, 19
accessing system
 CPU (central processing unit), 16
 from maintenance telephones, 22
air filters, pedestal
 blocked, 46
 servicing, 25
alarms, system, 39
attendant console alarm indications, 39, 40

B
Background Routines
 described, 51
 programs used in, 52
batteries, lithium, 10
battery pack assembly, option 21E
 routine maintenance, 25
battery systems, DC-power, 26
BKGD prompt, 51
BUG messages, 50

call processing
 Initialize Program effect on, 50
 sysload effect on, 37
 system initialization effect on, 35
cards, circuit
 enable/disable switch, 29
 excessive error messages from, 53
 handling, 11
 LEDs, 29
 maintenance displays, 33
 maintenance features, 28
 precautions, 10
changeover card reload button location, 38
columns, configuring PFTUs with, 43
commands
 entering on maintenance telephones, 22
 ISS, 57
 LMAX, 53
communicating with system, 15
configurations, equipment
 columns with PFTUs, 43, 44
 remote maintenance monitoring, 20
continuity tests, manual
 described, 58
 loopback configurations, 60
 point-to-point configurations, 59
cooling system temperature alarms, 46
Core Modules, option 61C/81, 55
CP (Call Processor) card ports, 18
CPIO ports, 19
CPU (central processing unit)
 accessing, 16
 downloading firmware from, 51
 line transfer on failure of, 43
CPU controls, 35

D
 data disks
 precautions, 12
 DCE ports, 18
 DC-power battery systems, 26
 diagnostic software programs, 49
 diagnostics, interactive, 57
 dial pad, terminal keyboard translation to, 23
 disabling circuit cards, 29
 disks/disk drive precautions, 12
 documents, reference, 7
 downloading firmware, 51
 DROL prompt, 51
 DTE ports, 18
 dual CPU systems, 35

E
 EHM mnemonic, 57
 emergency requests, technical assistance, 63
 enable/disable switches
 described, 29
 location, 30
 enabling circuit cards, 29
 Enhanced Maintenance feature, 57
 ERR messages, 50
 ERR mnemonic, 50
 ERRM prompt, 50
 Error Monitor program, 50
 ESD (electrostatic discharge) precautions, 11

F
 faults
 indicated by user reports, 62
 maintenance display indications, 33
 major alarms, 39
 minor alarms, 40
 NT8D22 System Monitor, 41, 42
 technical assistance classifications, 64
 trunk, 53
 firmware, 51

H
 hardware maintenance tools, 27
 History File
 described, 56
 maintenance display codes, 31

I
 initialize button
 described, 35
 Initialize Program and, 50
 Initialize Program, 50
 inserting
 circuit cards, 11
 data disks, 12
 intelligent peripheral card self-test, 28
 interactive diagnostics, 57
 ISS command, 57

K
 keyboard to dial pad translation, 23

L
 LD 11 (Multi-Line Telephone Administration), 22
 LD 17 (Short Memory Test), 54
 LD 22 (Print Routine 3), 56, 57
 LD 30 (Network and Signaling Diagnostic), 31
 LD 36 Trunk Diagnostic, 53
 LD 44 (Software Audit), 52
 LD 45 (Background Signaling and Switching Diagnostic), 58
 LD 135 (Core Common Equipment Diagnostic), 17, 31
General Maintenance Information

LD 137 (Core Input/Output Diagnostic), 17
LED (light emitting diode)
 described, 29
 indications, 31
 location, 32
 module power supply failures, 45
 temperature alarms, 46
line transfer
 major alarms causing, 39
 situations causing, 43
 syloads and, 37, 54
 system monitor and, 41
lithium batteries, 10
LMAX command, 53
loading software programs
 Overlay Loader, 53
loopback tests
 configurations, 60
 described, 58

M
maintenance
 routine, 25
maintenance display codes
 circuit cards/faults indicated, 33
 described, 31
 display location, 34
maintenance routines, interactive, 57
maintenance telephones
 described, 22
 loading overlay programs, 57
 translation from keyboard to dial pad, 23
major alarms
 defined, 39
 faults causing, 39
manual continuity tests
 described, 58
 loopback configurations, 60
 point-to-point configurations, 59
memory arbitrator card reload button location, 38
Midnight Routines
 described, 51
 programs used in, 52
minor alarms
 defined, 39
 faults causing, 40
mnemonics, 17
modems
 option 61C/81
 compatibility specifications, 21
 guidelines, 18
 switch box/SDI/CPIO port connections, 20
MTA (maintenance set allowed) COS, 22
Multi User Login feature, 16

N
normal/maintenance switches
 described, 35
NS technical assistance COS, 64
NT6D66 Call Processor (CP) card ports, 18
NT8D22 System Monitor
 described, 41
 message flow, 42
 module power supply failures, 45
 power unit designations from master, 47
 temperature alarms, 46

O
option 21E battery pack assembly, 25
option 61C/81
 software maintenance tools, 54
 system message interpretations, 17
 terminal/modem guidelines, 19
outpulsing, testing, 22
OVD mnemonic, 53
Overlay Loader program, 53
overlay programs
 accessible through maintenance telephones, 22
 options 61C/81, 55
 overview, 50
Overload Monitor program, 53

P
patches, system software, 57
pedestal air filters
 blocked, 46
 servicing, 25
PFTU (power failure transfer unit)
 500/2500 telephones and, 43
 configuring with columns, 43, 44
 major alarms, 39
point-to-point continuity tests
 configurations, 59
 described, 58
power failures
 external power system, 45
 module power supplies, 45
 NT8D22 System Monitor, 41
power supplies
 DC-power battery systems, 26
 equipment designations from master system
 monitor, 47
 module, 45
 monitoring of, 41
 NT8D22 System Monitor
 designations from master, 47
 option 21E battery pack assembly, 25
 precautions, 10
precautions, 9
 circuit cards, 11
 data disks, 12
printers, 18
printing
 History File contents, 56
 software generics/issues, 57
PWR mnemonic, 42

R
 references, 8
reloading (Rld or Man Rst) button
 circuit card location, 38
REMALMA/B remote alarm lines, 40
remote alarms
 defined, 39
 described, 40
remote maintenance monitoring equipment
 configuration, 20
replacing
 battery pack, 25
 circuit cards
 enable/disable switch, 29
 precautions, 11
reports, user, 61
resident diagnostic software programs, 50
Resident Trunk Diagnostic program, 53
routine maintenance, 25
S
 S1/2 technical assistance COS, 64
safety precautions
 battery systems, 26
 described, 9
SDI (serial data interface) ports/cards, 18
self-tests
 CP/IOP cards, 54
 intelligent peripheral cards, 28
Short Memory Test program, 54
SMEM prompt, 54
software programs
 as maintenance tools, 49
 loading, 53
static discharge points, 11
sysloads
 History File contents and, 56
 line transfers, 43
 minimizing time required for, 54
 options 61C/81, 54
 System Loader program, 53, 54
system initialization
 Initialize Program, 50
 manual, 35
 options 61C/81, 55
System Loader program
 described, 53
 Reload button and, 37
 system initialization, 51
system messages
 format, 16
 History File storage of, 56
 module power supply failures, 45
 NT8D22 System Monitor, 42
 Overload Monitor and, 53
 temperature alarms, 46
system, communicating with, 15, 16

T
 technical assistance service
classifications, 64
overview, 63
temperature, high column
alarms generated by, 46
temperatures, high column
line transfers, 43
terminals, system
 communicating with CPU, 16
 option 61C/81 guidelines, 18, 21
 SDI port connection, 18
translation from keyboard to dial pad, 23
tests
circuit card, 28
manual continuity, 58
tone testing, 22
trunks
 monitoring, 53

U
user reports
 faults indicated by, 62
overview, 61
Meridian 1

General Maintenance

Information

Copyright © 1990–2002 Nortel Networks
All Rights Reserved

Information is subject to change without notice. Nortel Networks reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules, and the radio interference regulations of Industry Canada. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.
SL-1 and Meridian 1 are trademarks of Nortel Networks.
Publication number: 553-3001-500
Document release: Standard 15.00
Date: January 2002
Printed in Canada